Theoretical and Applied Climatology

, Volume 130, Issue 3–4, pp 901–916 | Cite as

Drought variability and change across the Iberian Peninsula

Original Paper

Abstract

Drought variability and change was assessed across the Iberian Peninsula over more than 100 years expanding through the twentieth century and the first decade of the twenty-first century. Daily temperature and precipitation data from 24 Iberian time series were quality controlled and homogenized to create the Monthly Iberian Temperature and Precipitation Series (MITPS) for the period 1906–2010. The Standardized Precipitation Index (SPI), driven only by precipitation, and the Standardized Precipitation Evapotranspiration Index (SPEI), based on the difference between the precipitation and the reference evapotranspiration (ET0), were computed at annual and seasonal scale to describe the evolution of droughts across time. The results confirmed that a clear temperature increase has occurred over the entire Iberian Peninsula at the annual and seasonal scale, but no significant changes in precipitation accumulated amounts were found. Similar drought variability was provided by the SPI and SPEI, although the SPEI showed greater drought severity and larger surface area affected by drought than SPI from 1980s to 2010 due to the increase in atmospheric evaporative demand caused by increased temperatures. Moreover, a clear drying trend was found by the SPEI for most of the Iberian Peninsula at annual scale and also for spring and summer, although the SPI did not experience significant changes in drought conditions. From the drying trend identified for most of the Iberian Peninsula along the twentieth century, an increase in drought conditions can also be expected for this region in the twenty-first century according to future climate change projections and scenarios.

References

  1. Aguilar E, Brunet M, Saladié O, Sigró J, López D (2002) Hacia una aplicación óptima del standard normal homogeneity test para la homogeneización de series de temperatura. In La Información Climática como Herramienta de Gestión Ambiental, VII Reunión Nacional de Climatología, Grupo de Climatología de la AGE, Cuadrat JM, Vicente SM, SAZ MA (eds). Universidad de Zaragoza: Zaragoza, 17–33Google Scholar
  2. Aguilar E, Auer I, Brunet M, Peterson T C, Wieringa J (2003) Guidelines on Climate Metadata and Homogenization. No. 53. World Meteorological Organization, Geneva, 51 ppGoogle Scholar
  3. Alexandersson H, Moberg A (1997) Homogenisation of Swedish temperature data, part I: homogeneity test for linear trends. Int J Climatol 17:25–34CrossRefGoogle Scholar
  4. Barrera-Escoda A (2008) Evolución de los extremos hídricos en Catalunya en los últimos 500 años y su modelización regional (Evolution of hydric extremes in Catalonia during the last 500 years and its regional modelling), Ph.D. Thesis, Internal Publication, University of Barcelona, Barcelona, SpainGoogle Scholar
  5. Beguería S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34:3001–3023. doi:10.1002/joc.3887 CrossRefGoogle Scholar
  6. Breshears DD et al. (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci U S A 102:15144–15148CrossRefGoogle Scholar
  7. Brunet M, Saladié O, Jones PD, Sigró J, Aguilar E, Moberg A, Walther A, Lister D, López D, Almarza D (2006) The development of a new daily adjusted temperature dataset for Spain (1850–2003. Int J Climatol 26:1777–1802CrossRefGoogle Scholar
  8. Brunet M, Jones PD, Sigró J, Saladié O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, López D (2007) Temporal and spatial temperature variability and change over Spain during 1850-2005. J Geophys Res-Atmos 112(D12):117. doi:10.1029/2006JD008249 CrossRefGoogle Scholar
  9. Castro-Díez Y, Esteban-Parra MJ, Staudt M, Gámiz-Fortis S (2007) Temperature and precipitation changes in Andalusia in the Iberian Peninsula and northern hemisphere context. In: Sousa A, García-Barrón L, Jurado V (eds) Climate change in Andalusia: trends and environmental consequences. Consejería de Medio Ambiente de la Junta de Andalucía, Seville, pp. 57–77 332Google Scholar
  10. CLIVAR Assessment (2010) Clima en España: Pasado presente y futuro. In Pérez F, Boscolo R, eds. http://www.clivar.es/files/informe_clivar_final.pdf accessed 05 May 2015
  11. Coll JR, (2014) Drought variability and change across the Iberian Peninsula. Dissertation, Rovira i Virgili University. http://www.tdx.cat/handle/10803/145065 accessed 18 August 2016
  12. Coll JR, Jones PD, Aguilar E (2015) Expected changes in mean seasonal precipitation and temperature across the Iberian Peninsula for the 21st century. Idójárás 119(N1):1–22Google Scholar
  13. Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2:45–65. doi:10.1002/wcc.81 CrossRefGoogle Scholar
  14. Dai A (2012) Increasing drought under global warming in observations and models. Nat Clim Chang. doi:10.1038/NCLIMATE1633 Google Scholar
  15. del Río S, Penas A, Fraile R (2005) Analysis of recent climatic variations in Castile and Leon (Spain. Atmos Res 73(1–2):69–85Google Scholar
  16. Hartmann, D.L., A.M.G. Klein Tank, M. Rusticucci, L.V. Alexander, S. Brönnimann, Y. Charabi, F.J. Dentener, E.J. Dlugokencky, D.R. Easterling, A. Kaplan, B.J. Soden, P.W. Thorne, M. Wild and P.M. Zhai, 2013: Observations: Atmosphere and Surface. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  17. Iglesias A, Garrote L, Martin-Carrasco F (2009) Drought risk management in Mediterranean river basins. Integr Environ Assess Manag 5:11–16CrossRefGoogle Scholar
  18. Jones PD, Hulme M (1996) Calculating regional climatic time series for temperature and precipitation: methods and illustrations. Int J Climatol 16:361–377CrossRefGoogle Scholar
  19. Kendall MG (1970) Rank Correlation Methods (4th ed). Griffin and Co. LtdGoogle Scholar
  20. Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I, Doblas-Reyes FJ, Fiore AM, Kimoto M, Meehl GA, Prather M, Sarr A, Schär C, Sutton R, van Oldenborgh GJ, Vecchi G, Wang HJ (2013) Near-term climate change: projections and predictability. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  21. Lana X, Burgueño A (2000) Some statistical characteristics of monthly and annual pluviometric irregularity for the Spanish Mediterranean coast. Theoretical and Applied Climatolology 65(1–2):75–97Google Scholar
  22. Llasat MC, Quintas S (2004) Stationarity of monthly rainfall series since the middle of the XIXth century. Application to the case of peninsular Spain. Natural hazards. N 31:613–622Google Scholar
  23. Lorenzo-Lacruz J, Vicente-Serrano SM, López-Moreno JI, Beguería S, García-Ruiz JM, Cuadrat JM (2010) The impact of droughts and water management on various hydrological systems in the headwaters of the Tagus River (central Spain). Journal of Hydrology (Amst) 386:13–26CrossRefGoogle Scholar
  24. Lorenzo-Lacruz J, Vicente-Serrano SM, López-Moreno JI, Morán-Tejeda E, Zabalza J (2012) Recent trends in Iberian streamflows (1945-2005. J Hydrol 414-415(2012):463–475CrossRefGoogle Scholar
  25. Martínez MD, Serra C, Burgueño A, Lana X (2009) Time trends of daily maximum and minimum temperatures in Catalonia (NE Spain) for the period 1975-2004. Int J Climatol. doi:10.1002/joc.1884 Google Scholar
  26. McKee TBN, Doesken J, and Kleist J, (1993) The relationship of drought frequency and duration to time scales. Eight Conf. On Applied Climatology. Anaheim, CA, Amer. Meteor. Soc. 179–184Google Scholar
  27. Miró JJ, Estrela MJ, Milló M (2006) Summer temperature trends in a Mediterranean area (Valencia region. Int J Climatol 26:1051–1073CrossRefGoogle Scholar
  28. Mishra AK, Singh VP (2011) Drought modeling—a review. J Hydrol 403:157–175CrossRefGoogle Scholar
  29. Palmer WC (1965) Meteorological droughts. U.S. Department of Commerce Weather Bureau Research Paper 45,58 ppGoogle Scholar
  30. Rammukainen M (2010) State-of-the-art with regional climate models. Wiley Interdiscip Rev Clim Chang 1:82–96CrossRefGoogle Scholar
  31. Rodríguez-Puebla C, Nieto S (2010) Trends of precipitation over Iberian Peninsula and the North Atlantic Oscillation under climate change conditions. Int J Climatol 30:1807–1815Google Scholar
  32. Saladié O, (2004) Variaciones y tendencia secular de la precipitación en el Sector Nororiental de la Penísnula Ibérica (1850–2000), Dissertation, Barcelona UniversityGoogle Scholar
  33. Santos J, Pulido-Calvo I, Portela MM (2010) Spatial and temporal variability of droughts in Portugal. Water Resour Res. doi:10.1029/2009WR008071 2010Google Scholar
  34. Serra C, Burgueño A, Martínez MD, Lana X (2006) Trends in dry spells across Catalonia (NE Spain) during the second half of the 20th century. Theor Appl Climatol. doi:10.1007/s00704-005-0184-6 Google Scholar
  35. Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–438. doi:10.1038/nature11575 CrossRefGoogle Scholar
  36. Sousa P, Trigo RM, Aizpurua P, Nieto R, Gimeno L, Garcia-Herrera R, (2011) Trends and extremes of drought indices throughout the 20th century in the Mediterranean, NHESS, Special Issue “Understanding dynamics and current developments of climate extremes in the Mediterranean region”, 11, 33–51; doi:10.5194/nhess-11-33-2011Google Scholar
  37. SREX (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 ppGoogle Scholar
  38. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94CrossRefGoogle Scholar
  39. Trenberth, KE (2007) Observations: Surface and Atmospheric Climate Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  40. Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Chang 4:17–22. doi:10.1038/nclimate2067 CrossRefGoogle Scholar
  41. van der Schrier G, Jones PD, Briffa KR (2011) The sensitivity of the PDSI to the Thorthwaite and Penman-Monteith parameterizations for potential evapotranspiration. J Geophys Res 116:D03106. doi:10.1029/2010JD015001 Google Scholar
  42. van der Schrier G, Barichivich J, Jones PD, Briffa KR (2013) A sc-PDSI-based global dataset of dry and wet spells for 1901-2009. Journal of Gephysical. Research 118:4025–4048. doi:10.1002/jgrd.50355 Google Scholar
  43. Vicente Serrano SM (2006) Spatial and temporal analysis of droughts in the Iberian Peninsula (1910-2000. Hydrol Sci J 51:83–97CrossRefGoogle Scholar
  44. Vicente-Serrano SM, Cuadrat-Prats JM (2006) Trends in drought intensity and variability in the middle Ebro valley (NE Spain) during the second half of the twentieth century. Theor Appl Climatol 88:247–258CrossRefGoogle Scholar
  45. Vicente-Serrano SM, González-Hidalgo JC, de Luis M, Raventós J (2004) Spatial and temporal patterns of droughts in the Mediterranean area: the Valencia region (eastern Spain). Climatic. Research 26:1427–1456Google Scholar
  46. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multi-scalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718. doi:10.1175/2009JCLI2909.1 CrossRefGoogle Scholar
  47. Vicente-Serrano SM, Beguería S, López-Moreno JI (2011) Comment on “characteristics and trends in various forms of the palmer drought severity index (PDSI) during 1900-2008” by Aiguo Dai. J Geophys Res 116:D19112. doi:10.1029/2011JD016410 CrossRefGoogle Scholar
  48. Vicente-Serrano SM, Chura O, López-Moreno JI, Azorin-Molina C, Sánchez-Lorenzo A, Aguilar E, Moran-tejeda E, Trujillo F, Martínez R, Nieto JJ (2014a) Spatial-temporal variability of droughts in Bolivia: 1955-2012. Int J Climatol. doi:10.1002/joc.4190 Google Scholar
  49. Vicente-Serrano SM, López-Moreno JI, Beguería S, Lorenzo-Lacruz J, Sánchez-Lorenzo A, García Ruiz JM, Azorin-Molina C, Revuelto J, Trigo R, Coelho F, Espejo F (2014b) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res Lett 9:044001. doi:10.1088/1748-9326/9/4/044001 CrossRefGoogle Scholar
  50. Wang XL, Swail VR (2001) Changes of extreme wave height in northern hemisphere oceans and related atmospheric circulation regimes. Journal of Climate Volume 14:12–45Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Centre for Climate Change (C3), Geography DepartmentUniversitat Rovira i VirgiliTortosaSpain

Personalised recommendations