Advertisement

Theoretical and Applied Climatology

, Volume 130, Issue 1–2, pp 535–544 | Cite as

Out-phased decadal precipitation regime shift in China and the United States

  • Lichao Yang
  • Zuntao Fu
Original Paper

Abstract

In order to understand the changes in precipitation variability associated with the climate shift around mid-1970s, the precipitation regime changes have been analyzed over both China and the USA. Specifically, a new variable is designed based on Benford’s Law (BL) to detect precipitation regime shift by using only the first digit information of the datasets. This new variable describes the decadal precipitation regime shift more directly and clearly than the traditional variables, such mean or trend of yearly precipitation amount. It is found that there is an obvious out-phased relation for precipitation regime shift over China and the USA, i.e., a significant shift from the lower to the higher BL’s goodness of fit (weaker to stronger precipitation intensity) in the Southern China occurred in 1979, and a significant shift from the higher to the lower BL’s goodness of fit (stronger to weaker precipitation intensity) in the USA occurred around 1978.

Keywords

Precipitation Intensity Interdecadal Variation Traditional Variable Shift Pattern Change Point Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge the supports from the National Natural Science Foundation of China (Nos. 41175141 and 41475048).

References

  1. Ausloos M, Herteliu C, Ileanu B (2015) Physica A 419:736–745CrossRefGoogle Scholar
  2. Benford F (1938) Proc Am Philos Soc 78(4):551–572Google Scholar
  3. Berger A, Hill T (2011) Mathematical Intelligencer 33(1):85–91CrossRefGoogle Scholar
  4. Berger A, Hill TP. 2010 Fundamental flaws in Feller’s classical derivation of Benford’s law. arXiv:1005.2598
  5. Bormashenko E, Shulzinger E, Whyman G, Bormashenko Y (2016) Physica A 444:524–529CrossRefGoogle Scholar
  6. Ding Y, Wang Z, Sun Y (2008) Int J Climatol 28(9):1139–1161CrossRefGoogle Scholar
  7. Fang K, Seppa H, Chen D (2015) Clim Dyn 44(7–8):1777–1787CrossRefGoogle Scholar
  8. Feller W (1957) An introduction to probability theory and its applications, 2nd edn. Wiley, New YorkGoogle Scholar
  9. Feng GL, Gong ZQ, Dong WJ, Li JP (2005) Acta Phys Sin 54:5494–5499Google Scholar
  10. Fewster RM (2009) Am Stat 63(1):26CrossRefGoogle Scholar
  11. Findell KL, Gentine P, Lintner BR, Kerr C (2011) Nat Geosci 4:434–439CrossRefGoogle Scholar
  12. Formann A (2010) PLoS One 5(5):e10541CrossRefGoogle Scholar
  13. Graham N (1994) Clim Dyn 10(3):135–162CrossRefGoogle Scholar
  14. Guilderson TP, Schrag DP (1998) Science 281(5374):240–243CrossRefGoogle Scholar
  15. Guo ZH, Liu XM, Xiao WF, Wang JL, Meng C (2007) Resource. Science 29(6):2–9Google Scholar
  16. Hartmann B, Wendler G (2005) J Clim 18(22):4824–4839CrossRefGoogle Scholar
  17. He WP, Feng GL, Wu Q, He T, Wan SQ, Chou JF (2012) Int JClimatol 32:1604–1614Google Scholar
  18. He WP, Liu QQ, Jiang YD, Lu Y (2015) Chin Phys B 24(4):049205Google Scholar
  19. Hill TP (1998) Am Sci 86(4):358–363CrossRefGoogle Scholar
  20. Huang R, Xu Y, Zhou L. 1999; 18:465–476.Google Scholar
  21. Jin HM, He WP, Liu QQ, Wang JS, Feng GL (2016) Theor Appl Climatol 124:475–486CrossRefGoogle Scholar
  22. Lau K, Weng H (2002) J Meteorol Soc Jpn 80(6):1309–1324CrossRefGoogle Scholar
  23. Lee Y, Yeh S, Dewitte B, Moon B, Jhun J (2012) Theor Appl Climatol 107(3):623–631CrossRefGoogle Scholar
  24. Li QL, Fu ZT (2016) Commun Nonlinear Sci Numer Simulat 33:91–98Google Scholar
  25. Li QL, Fu ZT, Yuan NM (2015) PLoS One 10(6):e0129161. doi: 10.1371/journal.pone.0129161
  26. Mao JY, Chan JCL, Wu GX (2011) Int J Climatol 31:847–862Google Scholar
  27. Mebane WR (2004) Perspectives on Politics 2(3):525–535CrossRefGoogle Scholar
  28. Mir T (2012) Physica A 391(3):792–798CrossRefGoogle Scholar
  29. Nigrini MJ (1996) The. Journal of the American Taxation Association 18(1):72Google Scholar
  30. Power SB, Smith IN (2007) Geophys Res Lett 34(18):L18702CrossRefGoogle Scholar
  31. Qian WH, Qin A (2008) Theor Appl Climatol 93(1):1–17CrossRefGoogle Scholar
  32. Sambridge M, Tkalcic H, Jackson A (2010) Geophys Res Lett 37(22):L22301CrossRefGoogle Scholar
  33. Sellars SL, Gao X, Sorooshian S (2015) J Hydrometeorol 16(2):830–842CrossRefGoogle Scholar
  34. Sen A, Sen U (2011) Europhys Lett 95(5):50008CrossRefGoogle Scholar
  35. Shao L, Ma B (2009) Modern Physics Letters A 24(40):3275–3282Google Scholar
  36. Shao L, Ma B (2010) Astropart Phys 33(4):255–262CrossRefGoogle Scholar
  37. Wang F, Yang S, Higgins W, Li Q, Zuo Z (2014) Int J Climatol 34(2):286–302CrossRefGoogle Scholar
  38. Zhai P, Zhang X, Wan H (2005) J Clim 18:1096–1107CrossRefGoogle Scholar
  39. Zhao P, Zhu Y, Zhang R (2007) Clim Dyn 29(2):293–303CrossRefGoogle Scholar
  40. Zhao P, Yang S, Wang H, Zhang Q (2011) J Clim 24(18):4793–4799CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Department of Atmospheric and Oceanic Sciences, Laboratory for Climate and Ocean-Atmosphere studies, School of PhysicsPeking UniversityBeijingChina

Personalised recommendations