Theoretical and Applied Climatology

, Volume 130, Issue 1–2, pp 1–17 | Cite as

Arctic warming, moisture increase and circulation changes observed in the Ny-Ålesund homogenized radiosonde record

  • Marion MaturilliEmail author
  • Markus Kayser
Original Paper


Radiosonde measurements obtained at the Arctic site Ny-Ålesund (78.9°N, 11.9°E), Svalbard, from 1993 to 2014 have been homogenized accounting for instrumentation discontinuities by correcting known errors in the manufacturer provided profiles. The resulting homogenized radiosonde record is provided as supplementary material at From the homogenized data record, the first Ny-Ålesund upper-air climatology of wind, temperature and humidity is presented, forming the background for the analysis of changes during the 22-year period. Particularly during the winter season, a strong increase in atmospheric temperature and humidity is observed, with a significant warming of the free troposphere in January and February up to 3 K per decade. This winter warming is even more pronounced in the boundary layer below 1 km, presumably amplified by mesoscale processes including e.g. orographic effects or the boundary layer capping inversion. Though the largest contribution to the increasing atmospheric water vapour column in winter originates from the lowermost 2 km, no increase in the contribution by specific humidity inversions is detected. Instead, we find an increase in the humidity content of the large-scale background humidity profiles. At the same time, the tropospheric flow in winter is found to occur less frequent from northerly directions and to the same amount more frequent from the South. We conclude that changes in the atmospheric circulation lead to an enhanced advection of warm and moist air from lower latitudes to the Svalbard region in the winter season, causing the warming and moistening of the atmospheric column above Ny-Ålesund, and link the observations to changes in the Arctic Oscillation.


Polar Vortex Arctic Oscillation Free Troposphere Radiosonde Data Arctic Oscillation Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the overwintering staff of the AWIPEV research base (former Koldewey station) in Ny-Ålesund for the devoted launches of thousands of radiosondes contributing to this study. Special thanks to Jürgen Graeser, Siegrid Debatin and Holger Deckelmann for technical hard- and software support. We also thank the GRUAN Lead Centre for reprocessing early Ny-Ålesund RS92 radiosonde data. Furthermore, we thank Sabine Erxleben and Dörthe Handorf for calculating AO patterns and indices and for helpful discussions during the review process. We thank the reviewers for their helpful comments.


  1. Beszczynska-Möller A, Fahrbach E, Schauer U, Hansen E (2012) Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J Mar Sci 69:852–863. doi: 10.1093/icesjms/fss056 CrossRefGoogle Scholar
  2. Beine HJ, Argentini S, Maurizi A, Mastrantonio G, Viola A (2001) The local wind field at Ny-Ålesund and the Zeppelin mountain at Svalbard. Meteorog Atmos Phys 78:107–113. doi: 10.1007/s007030170009 CrossRefGoogle Scholar
  3. Bintanja R, Graversen RG, Hazeleger W (2011) Arctic wintertime amplified by the thermal inversion and consequent low infrared cooling to space. Nat Geosci 4:758–761. doi: 10.1038/NGEO1285 CrossRefGoogle Scholar
  4. Bodeker GE, Bojinski S, Cimini D, Dirksen RJ, Haeffelin M, Hannigan JW, Hurst DF, Leblanc T, Madonna F, Maturilli M, Mikalsen A, Philipona R, Reale T, Seidel DJ, Tan DGH, Thorne PW, Vömel H, Wang J (2016) Reference upper- air observations for climate: from concept to reality. Bull Am Meteorol Soc 97(1):123–135. doi: 10.1175/BAMS-D-14-00072.1
  5. Chylek P, Folland CK, Lesins G, Dubey MK, Wang M (2009) Arctic air temperature change amplification and the Atlantic multidecadal oscillation. Geophys Res Lett 36:L14801. doi: 10.1029/2009GL038777 CrossRefGoogle Scholar
  6. Curry JA, Schramm JL, Serreze MC, Ebert EE (1995) Water vapour feedback over the Arctic Ocean. J Geophys Res 100:14223–14229. doi: 10.1029/95JD00824 CrossRefGoogle Scholar
  7. Dai A, Wang A, Thorne PW, Parker DE, Haimberger L, Wang X (2011) A new approach to homogenize daily radiosonde humidity data. J Clim 24:965–991. doi: 10.1175/2010JCLI3816.1 CrossRefGoogle Scholar
  8. Devasthale A, Sedlar J, Tjernström M (2011) Characteristics of water-vapour inversions observed over the Arctic by Atmospheric Infrared Sounder (AIRS) and radiosondes. Atmos Chem Phys 11:9813–9823. doi: 10.5194/acp-11-9813-2011 CrossRefGoogle Scholar
  9. Dirksen RJ, Sommer M, Immler FJ, Hurst DF, Kivi R, Vömel H (2014) Reference quality upper-air measurements; GRUAN data processing for the Vaisala RS92 radiosonde. Atmos Meas Tech 7:4463–4490. doi: 10.5194/amt-7-4463-2014 CrossRefGoogle Scholar
  10. Doyle JG, Lesins G, Thackray CP, Perro C, Nott GJ, Duck TJ, Damoah R, Drummond JR (2011) Water vapour intrusions into the high Arctic during winter. Geophys Res Lett 38:L12806. doi: 10.1029/2011GL047493 CrossRefGoogle Scholar
  11. Durre I, Vose RS, Wuertz DB (2006) Overview of the integrated global radiosonde archive. J Clim 19:53–68. doi: 10.1175/JCLI3594.1 CrossRefGoogle Scholar
  12. Elliott WP, Gaffen DJ (1991) On the utility of radiosonde humidity archives for climate studies. Bull Am Meteorol Soc 72:1507–1520. doi: 10.1175/1520-0477(1991)072<1507:OTUORH>2.0.CO;2 CrossRefGoogle Scholar
  13. Esau I, Ripina I (2012) Wind climate in Kongsfjorden, Svalbard, and attribution of leading wind driving mechanisms through turbulence-resolving simulations. Adv Meteorol ID568454. doi: 10.1155/2012/568454
  14. Francis JA, Hunter E (2006) New insight into the disappearing Arctic sea ice. EOS Trans Am Geophys Union 87:509–511CrossRefGoogle Scholar
  15. Gaffen DJ (1994) Temporal inhomogeneities in radiosonde temperature records. J Geophys Res 99:3667–3676. doi: 10.1029/93JD03179
  16. Graversen RG, Mauritsen T, Tjernström M, Källén E, Svensson G (2008) Vertical structure of recent Arctic warming. Nature 451:53–56. doi: 10.1038/nature06502 CrossRefGoogle Scholar
  17. Gruber C, Haimberger L (2008) On the homogeneity of radiosonde wind time series. Meteorol Z 17:631–643. doi: 10.1127/0941-2948/2008/0298 CrossRefGoogle Scholar
  18. Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal functions and related techniques in atmospheric science: a review. Int J Climatol 27:1119–1152. doi: 10.1002/joc.1499 CrossRefGoogle Scholar
  19. Hansen J, Nazarenko L (2004) Soot climate forcing via snow and ice albedos. Proc Natl Acad Sci U S A 101:423–428. doi: 10.1073/pnas.2237157100 CrossRefGoogle Scholar
  20. Hare FK (1960) The summer circulation of the arctic stratosphere below 30 km. Q J R Meteorol Soc 86:127–143CrossRefGoogle Scholar
  21. Hyland RW, Wexler A (1983) Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15 K to 473.15 K. ASHRAE Trans 89(2 A):500–519Google Scholar
  22. Kahl JD (1990) Characteristics of the low-level temperature inversion along the Alaskan Arctic Coast. Int J Climatol 10:537–548. doi: 10.1002/joc.3370100509 CrossRefGoogle Scholar
  23. Kivi R, Kujanpää J, Aulamo O, Hassinen S, Heikkinen P, Calbet X, Montagner F, Vömel H (2009) Observations of water vapor profiles over Northern Finland by satellite and balloon borne instruments. Proceedings of the 2009 EUMETSAT Meteorological Satellite Conference, EUMETSAT P.55, ISSN 1011-3932.Google Scholar
  24. Lanzante JR (1996) Resistant, robust and non-parametric techniques for the analysis of climate data: theory and examples including applications to historical radiosonde station data. Int J Climatol 16:1197–1226. doi: 10.1002/(SICI)1097-0088(199611)16:11<1197::AID-JOC89>3.0.CO;2-L CrossRefGoogle Scholar
  25. Marks AA, King MD (2013) The effects of additional black carbon on the albedo of Arctic sea ice: variation with sea ice type and snow cover. Cryosphere 7:1193–1204. doi: 10.5194/tc-7-1193-2013 CrossRefGoogle Scholar
  26. Massoli P, Maturilli M, Neuber R (2006) Climatology of Arctic polar stratospheric clouds as measured by lidar in Ny-Ålesund, Spitsbergen (79°N, 12°E). J Geophys Res 111:D09206. doi: 10.1029/2005JD005840 CrossRefGoogle Scholar
  27. Maturilli M, Neuber R, Massoli P, Cairo F, Adriani A, Moriconi ML, Di Donfrancesco G (2005) Differences in Arctic and Antarctic PSC occurrence as observed by lidar in Ny-Ålesund (79°N, 12°E) and McMurdo (78°S, 167°E). Atmos Chem Phys 5:2081–2090CrossRefGoogle Scholar
  28. Maturilli M, Herber A, König-Langlo G (2013) Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard. Earth Syst Sci Data 5:155–163. doi: 10.5194/essd-5-155-2013 CrossRefGoogle Scholar
  29. Maturilli M, Herber A, König-Langlo G (2015) Surface radiation climatology for Ny-Ålesund, Svalbard (78.9°N), basic observations for trend detection. Theor Appl Climatol 120:331–339. doi: 10.1007/s00704-014-1173-4 CrossRefGoogle Scholar
  30. Miloshevich LM, Vömel H, Paukkunen A, Heymsfield AJ, Oltmans SJ (2001) Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. J Atmos Ocean Technol 18:135–155CrossRefGoogle Scholar
  31. Miloshevich LM, Paukkunen A, Vömel H, Oltmans S (2004) Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. J Atmos Ocean Technol 21:1305–1327. doi: 10.1175/1520-0426(2004)021<1305:DAVOAT>2.0.CO;2 CrossRefGoogle Scholar
  32. Moradi I, Soden B, Ferraro R, Arkin P, Vömel H (2013) Assessing the quality of humidity measurements from global operational radiosonde sensors. J Geophys Res 118:8040–8053. doi: 10.1002/jgrd.50589 Google Scholar
  33. Nygård T, Valkonen T, Vihma T (2014) Characteristics of Arctic low-tropospheric humidity inversions based on radio soundings. Atmos Chem Phys 14:1959–1971. doi: 10.5194/acp-14-1959-2014 CrossRefGoogle Scholar
  34. Ohmura A (2001) Physical basis for the temperature-based melt-index method. J Appl Meteorol 40:753–761. doi: 10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2 CrossRefGoogle Scholar
  35. Overland JE, Wang M, Salo S (2008) The recent Arctic warm period. Tellus A 60:589–597. doi: 10.1111/j.1600-0870.2008.00327.x CrossRefGoogle Scholar
  36. Park DSR, Lee S, Feldstein SB (2015) Attribution oft he recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. J Clim 28:4027–4033. doi: 10.1175/JCLI-D-15-0042.1 CrossRefGoogle Scholar
  37. Preisendorfer RW (1988) Principal component analysis in meteorology and oceanography. In: Developments in atmospheric science, vol 17. Elsevier, AmsterdamGoogle Scholar
  38. Rojo M, Claud C, Mallet PE, Noer G, Carleton AM, Vicomte M (2015) Polar low tracks over the Nordic Seas: a 14-winter climate analysis. Tellus A 67:24660. doi: 10.3402/tellusa.v67.24660 CrossRefGoogle Scholar
  39. Scherhag R (1952) Die explosionsartige Stratosphärenerwärmung des Spätwinters 1951/52. Ber Deut Wetterdienst 38:51–63Google Scholar
  40. Schweiger AJ, Lindsay RW, Vavrus S, Francis JA (2008) Relationships between Arctic sea ice and clouds during autumn. J Clim 21:4799–4810. doi: 10.1175/2008JCLI2156.1 CrossRefGoogle Scholar
  41. Screen JA, Simmonds I (2010) The central role of diminishing sea ice retreat in recent Arctic temperature amplification. Nature 464:1334–1337. doi: 10.1038/nature09051 CrossRefGoogle Scholar
  42. Sedlar J, Tjerström M (2009) Stratiform cloud - inversion characterization during the Arctic melt season. Bound-Layer Meteorol 132:455–474. doi: 10.1007/s10546-009-9407-1 CrossRefGoogle Scholar
  43. Sedlar J, Shupe MD, Tjernström M (2012) On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic. J Clim 25:2374–2393. doi: 10.1175/JCLI-D-11-00186.1 CrossRefGoogle Scholar
  44. Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM (2009) The emergence of surface-based Arctic amplification. Cryosphere 3:11–19. doi: 10.5194/tc-3-11-2009 CrossRefGoogle Scholar
  45. Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Chang 77:85–96CrossRefGoogle Scholar
  46. Serreze MC, Barrett AP, Cassano JJ (2011) Circulation and surface controls on the lower tropospheric air temperature field of the Arctic. J Geophys Res 116:D07104. doi: 10.1029/2010JD015127 CrossRefGoogle Scholar
  47. Shindell D, Faluvegi G (2009) Climate response to regional radiative forcing during the twentieth century. Nat Geosci 2:294–300. doi: 10.1038/NGEO473 CrossRefGoogle Scholar
  48. Shupe MD, Intrieri JM (2004) Cloud radiative forcing of the Arctic surface: the influence of cloud properties, surface albedo, and solar zenith angle. J Clim 17:616–628. doi: 10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2 CrossRefGoogle Scholar
  49. Soden BJ, Lanzante RL (1996) An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor. J Clim 9:1235–1250. doi: 10.1175/1520-0442(1996)009<1235:AAOSAR>2.0.CO;2 CrossRefGoogle Scholar
  50. Solomon A, Shupe MD, Persson POG, Morrison H (2011) Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion. Atmos Chem Phys 11:10127–10148. doi: 10.5194/acp-11-10127-2011 CrossRefGoogle Scholar
  51. Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  52. Treffeisen R, Krejci R, Ström J, Engvali AC, Herber A, Thomason L (2007) Humidity observations in the Arctic troposphere over Ny-Ålesund, Svalbard based on 15 years of radiosonde data. Atmos Chem Phys 7:2721–2732. doi: 10.5194/acp-7-2721-2007 CrossRefGoogle Scholar
  53. Vihma T, Kilpeläinen T, Manninen M, Sjöblom A, Jakobson E, Palo T, Jaagus J, Maturilli M (2011) Characteristics of temperature and humidity inversions and low-level jets over Svalbard fjords in spring. Adv Meteorol 2011:ID486807. doi: 10.1155/2011/486807 CrossRefGoogle Scholar
  54. Wang J, Cole HL, Carlson DJ, Miller ER, Beierle K (2002) Corrections of humidity measurement errors from the Vaisala RS80 radiosonde–application to TOGA COARE data. J Atmos Ocean Technol 19:981–1002. doi: 10.1175/1520-0426(2002)019<0981:COHMEF>2.0.CO;2 CrossRefGoogle Scholar
  55. Woods C, Caballero R (2016) The role of moist intrusions in winter Arctic warming and sea ice decline. J Clim. doi: 10.1175/JCLI-D-15-0773.1 Google Scholar
  56. World Meteorological Organization (1957) Meteorology—a three dimensional science. WMO Bull 6:134–138Google Scholar
  57. Zängl G, Hoinka KP (2001) The tropopause in the polar regions. J Clim 14:3117–3139CrossRefGoogle Scholar
  58. Zhang Y, Seidel DJ (2011) Challenges in estimating trends in Arctic surface‐based inversions from radiosonde data. Geophys Res Lett 38:L17806. doi: 10.1029/2011GL048728

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchPotsdamGermany

Personalised recommendations