Theoretical and Applied Climatology

, Volume 129, Issue 3–4, pp 1355–1372 | Cite as

Carbon dioxide seasonality in dynamically ventilated caves: the role of advective fluxes

  • Marek Lang
  • Jiří Faimon
  • Jean Godissart
  • Camille Ek
Original Paper

Abstract

The seasonality in cave CO2 levels was studied based on (1) a new data set from the dynamically ventilated Comblain-au-Pont Cave (Dinant Karst Basin, Belgium), (2) archive data from Moravian Karst caves, and (3) published data from caves worldwide. A simplified dynamic model was proposed for testing the effect of all conceivable CO2 fluxes on cave CO2 levels. Considering generally accepted fluxes, i.e., the direct diffusive flux from soils/epikarst, the indirect flux derived from dripwater degassing, and the input/output fluxes linked to cave ventilation, gives the cave CO2 level maxima of 1.9 × 10−2 mol m−3 (i.e., ∼ 440 ppmv), which only slightly exceed external values. This indicates that an additional input CO2 flux is necessary for reaching usual cave CO2 level maxima. The modeling indicates that the additional flux could be a convective advective CO2 flux from soil/epikarst driven by airflow (cave ventilation) and enhanced soil/epikarstic CO2 concentrations. Such flux reaching up to 170 mol s−1 is capable of providing the cave CO2 level maxima up to 3 × 10−2 mol m−3 (70,000 ppmv). This value corresponds to the maxima known from caves worldwide. Based on cave geometry, three types of dynamic caves were distinguished: (1) the caves with the advective CO2 flux from soil/epikarst at downward airflow ventilation mode, (2) the caves with the advective soil/epikarstic flux at upward airflow ventilation mode, and (3) the caves without any soil/epikarstic advective flux. In addition to CO2 seasonality, the model explains both the short-term and seasonal variations in δ13C in cave air CO2.

Abbreviations

AIFE

advective input flux from soils/epikarst

BC

Balcarka Cave

CO2

carbon dioxide

C-PC

Comblain-au-Pont Cave

DAF

downward airflow

KC

Kateřinská Cave

LE

lower entrance

MK

Moravian Karst

PC

Punkevní Caves

S-ŠC

Sloup-Šošůvka Caves

UAF

upward airflow

UE

upper entrance

ZC

Zazděná Cave

cCO2

carbon dioxide concentration

ccave

carbon dioxide concentration in the cave atmosphere

ccave0

initial carbon dioxide concentration in the cave atmosphere

ccavess

carbon dioxide steady state concentration in the cave atmosphere

cEK

carbon dioxide concentration in soils/epikarst

cext

carbon dioxide concentration in external atmosphere

∆c

carbon dioxide concentration gradient

D

carbon dioxide diffusion coefficient

Dair

carbon dioxide diffusion coefficient in free air

DEK

carbon dioxide diffusion coefficint in karst bedrock

Dsoil

carbon dioxide diffusion coefficient in soil

ε

air-filled porosity

Φ

total porosity

I

water infiltration

j

carbon dioxide flux

jadv

advective carbon dioxide flux

jadv (EKO)in

advective input carbon dioxide flux through soil/epikarst

jadv (FO)in

advective carbon dioxide influx through free entrance/opening from exterior

jadv (tot)out

advective output carbon dioxide flux from the cave

jdif

diffusive carbon dioxide flux

jdif(EK)in

diffusive carbon dioxide flux into the cave from soil/epikarst

jdeg

carbon dioxide flux from one liter of dripwater by degassing

\( {j}_{deg}^{in} \)

total carbon dioxide flux into the cave derived from dripwater degassing

∆L

overburden thickness

nCO2

total content of carbon dioxide in cave atmosphere

P

barometric pressure

PCO2

carbon dioxide partial pressure

(C)PCO2

carbon dioxide partial pressure in the cave atmosphere

(EK)PCO2

carbon dioxide partial pressure in soil/epikarst

(W)PCO2

carbon dioxide partial pressure in the water

R

the universal gas constant

Sdeg

total area through which water enters the cave

Sdif

total diffusion area

t

time

T

temperature

Text

temperature in external atmosphere

Tcave

temperature in cave atmosphere

ΔT

temperature difference between cave and external atmosphere

τresp

cave response time

Vcave

cave total volume

v

volumetric velocity of airflow

vEKOin

volumetric velocity of the airflow through the entrance/opening in soil/epikarst

vFOin

volumetric velocity of airflow through free entrance/opening from the exterior

vtot

volumetric velocity of airflow through the cave

Notes

Acknowledgments

The authors thank two anonymous reviewers for valuable comments that helped to improve substantially the manuscript. The research was supported by fundings from Masaryk University (Brno) and Palacký University (Olomouc).

References

  1. Badino G (2010) Underground meteorology – “What’s the weather underground?“. Acta Carsol 39(3):427–448CrossRefGoogle Scholar
  2. Balák I, Jančo J, Štefka L, Bosák P (1999) Agriculture and nature conservation in the Moravian Karst (Czech Republic). Int J Speleol 28B:71–88CrossRefGoogle Scholar
  3. Baldini JUL, Baldini LM, McDermott F, Clipson N (2006) Carbon dioxide sources, sinks, and spatial variability in shallow temperatre zone caves: evidence from Ballynamintra Cave, Ireland. J Cave Karst Stud 68:4–11Google Scholar
  4. Baldini JUL, McDermott F, Hoffmann DL, Richards DA, Clipson N (2008) Very high-frequency and seasonal cave atmosphere PCO2 variability: implications for stalagmite growth and oxygen isotope-based paleoclimate records. Earth Planet Sci Lett 272:118–129CrossRefGoogle Scholar
  5. Batiot-Guilhe C, Seidel JL, Jourde H, Hébrard O, Bailly-Comte V (2007) Seasonal variations of CO2 and 222Rn in a mediterranean sinkhole – spring (Causse d’Aumelas, SE France). Int J Speleol 36(1):51–56CrossRefGoogle Scholar
  6. Benavente J, Vadillo I, Carrasco F, Soler A, Liñán C, Moral F (2010) Air carbon dioxide contents in the vadose zone of a Mediterranean karst. Vadose Zone J 9(1):126–136CrossRefGoogle Scholar
  7. Bharatdwaj K (2006) Physical geography: oceanography. Discovery Publishing Group, New DelhiGoogle Scholar
  8. Blecha M, Faimon J (2014) Spatial and temporal variations in carbon dioxide (CO2) concentrations in selected soils of the Moravian Karst (Czech Republic). Carbonates Evaporites 29(4):395–408CrossRefGoogle Scholar
  9. Boch R, Spötl C, Frisia S (2011) Origin and palaeoenvironmental significance of lamination in stalagmites from Katerloch Cave, Austria. Sedimentology 58:508–531CrossRefGoogle Scholar
  10. Bourges F, Mangin A, d’Hulst D (2001) Le gaz carbonique dans la dynamique de l’atmosphére des cavités karstiques: l’exemple de l’Aven d’Orgnac (Ardéche). Carbon dioxide in karst cavity atmosphere dynamics: the example of the Aven d’Orgnac (Ardéche). Earth Planet Sci 333:685–692Google Scholar
  11. Bourges F, Genthon P, Gent D, Lorblanchet M, Mauduit E, d’Hulst D (2014) Conservation of prehistoric caves and stability of their inner climate: lessons from chauvet and other French caves. Sci Total Environ 493:79–81CrossRefGoogle Scholar
  12. Buecher RH (1999) Microclimate study of Kartchner Caverns, Arizona. J Cave Karst Stud 61:108–120Google Scholar
  13. Casteel RC, Banner JL (2015) Temperature-driven seasonal calcite growth and drip water trace element variations in a well-ventilated Texas cave: implications for speleothem paleoclimate studies. Chem Geol 392:43–58CrossRefGoogle Scholar
  14. Christoforou CS, Salmon LG, Cass GR (1996) Air exchange within the Buddhist cave temples at Yungang, China. Atmos Environ 30:3995–4006CrossRefGoogle Scholar
  15. Cowan BD, Osborne MC, Banner JL (2013) Temporal variability of cave-air CO2 in central Texas. J Cave Karst Stud 75(1):38–50CrossRefGoogle Scholar
  16. Davidson EA, Trumbore SE (1995) Gas diffusivity and production of CO2 in deep soils of the eastern Amazon. Tellus Ser B-Chem Phys Meteorol 47(5):550–565CrossRefGoogle Scholar
  17. Denis A, Lastennet R, Huneau F, Malaurent P (2005) Identification of functional relationship between atmospheric pressure and CO2 in the cave of Lascaux using the concept of entropy of curves. Geophys Res Lett 32, L05810CrossRefGoogle Scholar
  18. Dragovich D, Grose J (1990) Impact of tourists on carbon dioxide levels at Jenolan Caves, Australia: an examination of microclimatic constraints on tourist cave management. Geoforum 21:111–120CrossRefGoogle Scholar
  19. Dreybrodt W (1999) Chemical kinetics, speleothem growth and climate. Boreas 28:347–356CrossRefGoogle Scholar
  20. Dreybrodt W, Scholz D (2011) Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: From soil water to speleothem calcite. Geochim Cosmochim Acta 75:734–752CrossRefGoogle Scholar
  21. Dueñas C, Fernández MC, Cañete S, Carretero J, Liger E (1999) 222Rn concentrations, natural flow rate and the radiation exposure levels in the Nerja Cave. Atmos Environ 33:501–510CrossRefGoogle Scholar
  22. Ek C (1979) Variations saisonnières des teneurs en CO2 d’une grotte belge: le Trou Joney à Comblain-au-Pont. Annales de la Société géologique de Belgique 102:71–75Google Scholar
  23. Ek C, Gewelt M (1985) Carbon dioxide in cave atmospheres. New results in Belgium and comparison with some other countries. Earth Surf Process Landf 10:173–187CrossRefGoogle Scholar
  24. Ek C, Godissart J (2014) Carbon dioxide in cave air and soil air in some karstic areas of Belgium. A prospective view. Geol Belg 17(1):102–106Google Scholar
  25. Faimon J, Lang M (2013) Variances in airflows during different ventilation modes in a dynamic U-shaped cave. Int J Speleol 42(2):115–122CrossRefGoogle Scholar
  26. Faimon J, Ličbinská M (2010) Carbon dioxide in the soils and adjacent caves of the Moravian Karst. Acta Carsol 39(3):463–475CrossRefGoogle Scholar
  27. Faimon J, Štelcl J, Sas D (2006) Anthropogenic CO2-flux into cave atmosphere and its environmental impact: a case study in the císařská cave (Moravian karst, Czech republic). Sci Total Environ 369:231–245CrossRefGoogle Scholar
  28. Faimon J, Troppová D, Baldík V, Novotný R (2012a) Air circulation and its impact on microclimatic variables in the Císařká Cave (Moravian Karst, Czech Republic). Int J Climatol 32:599–623CrossRefGoogle Scholar
  29. Faimon J, Ličbinská M, Zajíček P (2012b) Relationship between carbon dioxide in Balcarka Cave and adjacent soils in the Moravian Karst region of the Czech Republic. Int J Speleol 41(1):17–28CrossRefGoogle Scholar
  30. Faimon J, Ličbinská M, Zajíček P, Sracek O (2012c) Partial pressures of CO2 in epikarstic zone deduced from hydrogeochemistry of permanent drips, the Moravian Karst, Czech Republic. Acta Carsol 41(1):47–57Google Scholar
  31. Ford TD, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley & Sons, ChicesterCrossRefGoogle Scholar
  32. Frisia S, Borsato A, Fairchild IJ, McDermott (2000) Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and southwestern Ireland. J Sediment Res 70(5):1183–1196CrossRefGoogle Scholar
  33. Frisia S, Fairchild IJ, Fohlmeister J, Miorandi R, Spötl C, Borsato A (2011) Carbon massbalance modeling and carbon isotope exchange processes in dynamic caves. Geochim Cosmochim Acta 75:380–400CrossRefGoogle Scholar
  34. Garcia-Anton E, Cuezva S, Fernandez-Cortes A, Benavente D, Sanchez-Moral S (2014) Main drivers of diffusive and advective processes of CO2-gas exchange between a shallow vadose zone and the atmosphere. Int J Greenh Gas Control 21:113–129CrossRefGoogle Scholar
  35. Godissart J, Ek C (2013) Air CO2 in Comblain-au-Pont Cave (Belgium). Relationships with soil CO2 and open air meteorology. In: Filippi M, Bosák P (eds) Proceedings of the 16th international congress of speleology, vol 2. Czech Speleological Society, Praha, pp 400–405Google Scholar
  36. Grace J, Lloyd J, McIntyre J, Miranda A, Meir P, Miranda H, Moncrieff J, Massheder J, Wright I, Gash J (1995) Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in South-West Amazonia. Glob Change Biol 1:1–12CrossRefGoogle Scholar
  37. Hoyos M, Soler V, Cañaveras JC, Sánchez-Moral S, Sanz-Rubio E (1998) Microclimatic characterization of a karstic cave: human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo Cave, northern Spain). Environ Geol 33(4):231–242CrossRefGoogle Scholar
  38. Huang YM, Fairchild IJ (2001) Partitioning of Sr2+ and Mg2+ into calcite under karst-analogue experimental conditions. Geochim Cosmochim Acta 65:47–62CrossRefGoogle Scholar
  39. Jabro JD (2009) Water vapor diffusion through soil as affected by temperature and aggregate size. Transp Porous Med 77:417–428CrossRefGoogle Scholar
  40. Jabro JD, Sainju UM, Stevens WB, Evans RG (2012) Estimation of CO2 diffusion coefficient at 0–10 cm depth in undisturbed and tilled soils. Arch Agron Soil Sci 58(1):1–9CrossRefGoogle Scholar
  41. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263CrossRefGoogle Scholar
  42. Kowalczk AJ, Froelich PN (2010) Cave air ventilation and CO2 outgassing by radon-222 modeling: how fast do caves breath? Earth Planet Sci Lett 289:209–219CrossRefGoogle Scholar
  43. Lang M, Faimon J, Ek C (2015a) The relationship between carbon dioxide concentration and visitor numbers in the homothermic zone of the Balcarka Cave (Moravian Karst) during a period of limited ventilation. Int J Speleol 44(2):167–176CrossRefGoogle Scholar
  44. Lang M, Faimon J, Ek C (2015b) A case study of anthropogenic impact on the CO2 levels in low-volume profile of the Balcarka Cave (Moravian Karst, Czech Republic). Acta Carsol 44(1):71–80CrossRefGoogle Scholar
  45. Lasaga AC, Berner RA (1998) Fundamental aspects of quantitative models for geochemical cycles. Chem Geol 145:161–175CrossRefGoogle Scholar
  46. Luetscher M, Jeannin PY (2004) The role of winter air circulations for the presence of subsurface ice accumulations: an example from Monlési ice cave (Switzerland). Theor Appl Karstology 17:19–25Google Scholar
  47. Mattey DP, Fairchild IJ, Atkinson TC, Latin JP, Ainsworth M, Durell R (2010) Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels Cave, Gibraltar. In: Pedley HM, Rogerson M (eds) Tufas and speleothems: unravelling the microbial and physical controls. Geological Society, Special Publications, London, pp 323–344Google Scholar
  48. Mattey DP, Fisher R, Atkinson TC, Latin JP, Durrell R, Ainsworth M, Lowry D, Fairchild IJ (2013) Methane in underground air in Gibraltar karst. Earth Planet Sci Lett 374:71–80CrossRefGoogle Scholar
  49. Merenne-Schoumaker B (1975) Aspects de l’influence des touristes sur les microclimats de la grotte de Remouchamps. Ann Spéléo 30:273–285Google Scholar
  50. Meyer KW, Feng W, Breecker DO, Banner JL, Guilfoyle A (2014) Interpretation of speleothem calcite O13C variations: evidence from monitoring soil CO2, drip water, and modern speleothem calcite in central Texas. Geochim Cosmochim Acta 142:281–298CrossRefGoogle Scholar
  51. Milanolo S, Gabrovšek F (2009) Analysis of carbon dioxide variations in the atmosphere of srednja bijambarska cave, bosna and Herzegovina. Bound-Layer Meteor 131:479–493CrossRefGoogle Scholar
  52. Millington RJ, Quirk JP (1960) Transport in porous media. In: Van Baren FA (ed) Transactions of the 7th International Congress of Soil Science, vol 1. Elsevier, Amsterdam, pp 97–106Google Scholar
  53. Moldrup P, Kruse CW, Rolston DE, Yamaguchi T (1996) Modeling diffusion and reaction in soils: III. Predicting gas diffusivity from the Campbell soil-water retention model. Soil Sci 161:366–375CrossRefGoogle Scholar
  54. Musil R et al (1993) Moravský kras – labyrinty poznání (in Czech). GEO program, AdamovGoogle Scholar
  55. Němeček J et al. (1967) Komplexní průzkum zemědělských půd ČSSR (in Czech). VÚMOP Praha, Průvodní zpráva okresu Blansko, BrnoGoogle Scholar
  56. Parkhurst D, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2) – a computer program for speciation, batchreaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geol. Surv. Water Resour Inv Rep 99-4259Google Scholar
  57. Penman HL (1940) Gas and vapor movement in soil: 1. The diffusion of vapours through porous solids. J Agric Sci 30(3):437–463CrossRefGoogle Scholar
  58. Peyraube N, Lastennet R, Denis A (2012) Geochemical evolution of groundwater in the unsaturated zone of a karstic massif, using the PCO2–Sic relationship. J Hydrol 430–431:13–24CrossRefGoogle Scholar
  59. Peyraube N, Lastennet R, Denis A, Malaurent P (2013) Estimation of epikarst air PCO2 using measurements of water δ13CTDIC, cave air PCO2 and δ13CCO2. Geochim Cosmochim Acta 118:1–17CrossRefGoogle Scholar
  60. Pracný P, Faimon J, Kabelka L, Hebelka J (2015) Variations of carbon dioxide in the air and dripwaters of Punkva Caves (Moravian Karst, Czech Republic). Carbonates Evaporites. doi: 10.1007/s13146-015-0259-0 Google Scholar
  61. Quitt E (1971) Klimatické oblasti Československa (in Czech), Studia geographica 16, GÚ ČSAV. Academia, Brno, pp 1–73Google Scholar
  62. Ridgwell AJ, Marshall SJ, Gregson K (1999) Consumption of atmospheric methane by soils: a process-based model. Glob Biogeochem Cycle 13:59–70CrossRefGoogle Scholar
  63. Riechelmann DFC, Schröder-Ritzrau A, Scholz D, Fohlmeister J, Spötl C, Richter DK, Mangini A (2011) Monitoring bunker cave (NW Germany): a prerequisite to interpret geochemical proxy data of speleothems from this site. J Hydrol 409:682–695CrossRefGoogle Scholar
  64. Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models, 1st edn. John Wile & Sons, ChicesterGoogle Scholar
  65. Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20CrossRefGoogle Scholar
  66. Spötl C, Fairchild IJ, Tooth AF (2005) Cave air control on dripwater geochemistry, Obir Caves (Austria): implications for speleothem deposition in dynamically ventilated caves. Geochim Cosmochim Acta 69:2451–2468CrossRefGoogle Scholar
  67. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley-Interscience, New YorkGoogle Scholar
  68. Tremaine DM, Froelich PN, Wang Y (2011) Speleothem calcite farmed in situ: modern calibration of δ18O and δ13C paleoclimate proxies in a continously-monitored natural cave system. Geochim Cosmochim Acta 75:4929–4950CrossRefGoogle Scholar
  69. Troester JW, White WB (1984) Seasonal fluctuations in the carbon dioxide partial pressure in a cave atmosphere. Water Resour Res 20:153–156CrossRefGoogle Scholar
  70. Wasylenki LE, Dove PM, Wilson DS, De Yoreo JJ (2005) Nanoscale effects of strontium on calcite growth: an in situ AFM study in the absence of vital effects. Geochim Cosmochim Acta 69:3017–3027CrossRefGoogle Scholar
  71. Welty JR, Wicks CE, Wilson RE, Rorrer GL (2008) Fundamentals of momentum, heat, and mass transfer, 5th edn. Wiley, New YorkGoogle Scholar
  72. White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New YorkGoogle Scholar
  73. WMO (2014) Greenhouse Gas Bulletin, the State of Greenhouse Gases in the Atmosphere Using Global Observations through 2013. World Meteorological Organization, GenevaGoogle Scholar
  74. Wong CI, Banner JL, Musgrove M (2011) Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: implications for and modeling of speleothem paleoclimate records. Geochim Cosmochim Acta 75:3214–3529CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Marek Lang
    • 1
  • Jiří Faimon
    • 1
    • 2
  • Jean Godissart
    • 3
  • Camille Ek
    • 3
  1. 1.Department of Geological Sciences, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Geology, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
  3. 3.Department of Geology, Faculty of SciencesUniversity of LiègeLiègeBelgium

Personalised recommendations