Theoretical and Applied Climatology

, Volume 129, Issue 1–2, pp 521–538 | Cite as

Improving precipitation simulation from updated surface characteristics in South America

  • Gabriel PereiraEmail author
  • Maria Elisa Siqueira Silva
  • Elisabete Caria Moraes
  • Júlio Barboza Chiquetto
  • Francielle da Silva Cardozo
Original Paper


Land use and land cover maps and their physical-chemical and biological properties are important variables in the numerical modeling of Earth systems. In this context, the main objective of this study is to analyze the improvements resulting from the land use and land cover map update in numerical simulations performed using the Regional Climate Model system version 4 (RegCM4), as well as the seasonal variations of physical parameters used by the Biosphere Atmosphere Transfer Scheme (BATS). In general, the update of the South America 2007 land use and land cover map, used by the BATS, improved the simulation of precipitation by 10 %, increasing the mean temporal correlation coefficient, compared to observed data, from 0.84 to 0.92 (significant at p < 0.05, Student’s t test). Correspondingly, the simulations performed with adjustments in maximum fractional vegetation cover, in visible and shortwave infrared reflectance, and in the leaf area index, showed a good agreement for maximum and minimum temperature, with values closer to observed data. The changes in physical parameters and land use updating in BATS/RegCM4 reduced overestimation of simulated precipitation from 19 to 7 % (significant at p < 0.05, Student’s t test). Regarding evapotranspiration and precipitation, the most significant differences due to land use updating were located (1) in the Amazon deforestation arc; (2) around the Brazil-Bolivia border (in the Brazilian Pantanal wetlands); (3) in the Northeast region of Brazil; (4) in northwestern Paraguay; and (5) in the River Plate Basin, in Argentina. Moreover, the main precipitation differences between sensitivity and control experiments occurred during the rainy months in central-north South America (October to March). These were associated with a displacement in the South Atlantic convergence zone (SACZ) positioning, presenting a spatial pattern of alternated areas with higher and lower precipitation rates. These important differences occur due to the replacement of tropical rainforest for pasture and agriculture and the replacement of agricultural areas for pasture, scrubland, and deciduous forest.


Numerical modeling Remote sensing Physical parameters RegCM4 South America 



We would like to thank the São Paulo Research Foundation (FAPESP) for their financial support (2010/07083-0).


  1. Asselin H, Fortin M, Bergeron Y (2001) Spatial distribution of late-successional coniferous species regeneration following disturbance in southwestern Quebec boreal forest. Forest Ecol Manag 140:29–37CrossRefGoogle Scholar
  2. Capucim MN, Brand VS, Machado CB, Martins L, Allasia DG, Homann CT, De Freitas ED, Da Silva Dias MAF, Andrade MF, Martins JA (2015) South America land use and land cover assessment and preliminary analysis of their impacts on regional atmospheric modeling studies. IEEE J Sel Top Appl 8:1185–1198Google Scholar
  3. Charney JC, Quirk WJ, Chow SH, Kornfield J (1977) A comparative study of the effects of albedo change on drought in semiarid regions. J Atmos Sci 34:1366–1385CrossRefGoogle Scholar
  4. Croft TA (1978) Nighttime images of the Earth from space. Sci Am 239:86–98CrossRefGoogle Scholar
  5. D’Oliveira MVN, Alvarado EC, Santos JC, Carvalho J (2011) Forest natural regeneration and biomass production after slash and burn in a seasonally dry forest in the Southern Brazilian Amazon. Forest Ecol Manag 261:1490–1498CrossRefGoogle Scholar
  6. Da Rocha RP, Morales CA, Cuadra SV, Ambrizzi T (2009) Precipitation diurnal cycle and summer climatology assessment over South America: an evaluation of Regional Climate Model version 3 simulations. J Geophys Res 114:D10108CrossRefGoogle Scholar
  7. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, Mcnally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, De Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Meteorol Soc 137:553–597CrossRefGoogle Scholar
  8. Dickinson RE, Kennedy PJ, Henderson-Sellers A, Wilson M (1986) Biosphere-atmosphere transfer scheme (BATS) for the NCAR community climate model. Tech. Rep. NCARE/TN-275 + STR. National Center for Atmospheric Research, Boulder, ColoradoGoogle Scholar
  9. Dickinson RE, Errico RM, Giorgi F, Bates GT (1989) A regional climate model for the western United States. Clim Chang 15:383–422Google Scholar
  10. Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-atmosphere transfer scheme (bats) version 1e as coupled to the NCAR community climate model. Tech rep National Center for Atmospheric Research.Google Scholar
  11. Efron B (1982) The jackknife, the bootstrap and other resampling plans, SIAMGoogle Scholar
  12. Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335CrossRefGoogle Scholar
  13. Fuentes-Franco R, Coppola E, Giorgi F, Graef F, Pavia EG (2013) Assessment of RegCM4 simulated inter-annual variability and daily-scale statistics of temperature and precipitation over Mexico. Clim Dynam 42:629–647CrossRefGoogle Scholar
  14. Fujisaka S, Castilla C, Escobar G, Rodrigues V, Veneklaas EJ, Thomas R, Fisher M (1998) The effects of forest conversion on annual crops and pastures: estimates of carbon emissions and plant species loss in a Brazilian Amazon colony. Agric Ecosyst Environ 69:17–26CrossRefGoogle Scholar
  15. Georgescu M, Lobell DB, Field CB, Mahalov A (2013) Simulated hydroclimatic impacts of projected Brazilian sugarcane expansion. Geophys Res Lett 40:972–977. doi: 10.1002/grl.50206 CrossRefGoogle Scholar
  16. Giorgi F (1989) Two-dimensional simulations of possible mesoscale effects of nuclear war fires. J Geophys Res 94:1127–1144CrossRefGoogle Scholar
  17. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla M, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Cozzini S, Guettler I, O’brien TA, Tawfik A, Shalaby A, Za-Key A, Steiner A, Stordal F, Sloan L, Brankovic C (2012) RegCM4 model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29CrossRefGoogle Scholar
  18. Gradowski T, Lieffers VJ, Landhausser SM, Sidders D, Volney J, Spence JR (2010) Regeneration of Populus nine years after variable retention harvest in boreal mixedwood forests. Forest Ecol Manag 259:383–389CrossRefGoogle Scholar
  19. Hassan M, Penfei D, Iqbal W, Can W, Wei F, et al. (2014) Temperature and precipitation climatology assessment over South Asia using the Regional Climate Model (RegCM4.3): an evaluation of the model performance. J Earth Sci. Clim Chang 5:214. doi: 10.4172/2157-7617.1000214 Google Scholar
  20. Hauck C, Barthlott C, Krauss L, Kalthoff N (2011) Soil moisture variability and its influence on convective precipitation over complex terrain. Q J R Meteorol Soc 137:42–56CrossRefGoogle Scholar
  21. Houghton RA, Boone RD, Melillo JM, Palm CA, Woodwell GM, Myers N, Moore B, Skole DL (1985) Net flux of carbon dioxide from tropical forests in 1980. Nature 316:617–620CrossRefGoogle Scholar
  22. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM Multi-satellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8:38–55CrossRefGoogle Scholar
  23. Kang D, Lee MI, Im J, Kim D, Kim HM, Kang HS, Schubert SD, Arribas A, MacLachlan C (2014) Prediction of the Arctic Oscillation in boreal winter by dynamical seasonal forecasting systems. Geophys Res Lett 10:3577–3585. doi: 10.1002/2014GL060011
  24. Lanly JP (1982) Tropical forest resources, FAO Forestry Pap.30. FAO, RomeGoogle Scholar
  25. Martínez-Castro D, Rocha RP, Bezanilla-Morlot A, Alvarez-Escudero L, Reyes-Fernández JP, Silva-Vidal Y, Arritt RW (2006) Sensitivity studies of the RegCM3 simulation of summer precipitation, temperature and local wind field in the Caribbean Region. Theor Appl Climatol 86:5–22CrossRefGoogle Scholar
  26. Mcguffie K, Henderson-Sellers A (2001) Forty years of numerical climate modelling. Int J Climatol 21:1067–1109CrossRefGoogle Scholar
  27. Moreira MA, Adami M, Rudorff BFT (2004) Análise espectral e temporal da cultura do café em imagens Landsat. Pesqui Agropecu Bras 39:223–231CrossRefGoogle Scholar
  28. Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800CrossRefGoogle Scholar
  29. Nobre CA, Sellers PJ, Shukla J (1991) Amazonian deforestation and regional climate change. J Clim 4:957–988CrossRefGoogle Scholar
  30. Oh S-G, Park J-H, Lee S-H, Suh M-S (2014) Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J Geophys Res Atmos 119:2913–2927. doi: 10.1002/2013JD020693 CrossRefGoogle Scholar
  31. Otterman J (1974) Baring high-albedo soils by overgrazing: a hypothesized desertification mechanism. Science 186:531–533CrossRefGoogle Scholar
  32. Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Rauscher SA, Steiner AL (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull. Amer Meteor Soc 88:1395–1409CrossRefGoogle Scholar
  33. Rudorff BFT, Aguiar DA, Silva WF, Sugawara LM, Adami M, Moreira MA (2010) Studies on the rapid expansion of sugarcane for ethanol production in São Paulo state (Brazil) using Landsat data. Remote Sens 2:1057–1076CrossRefGoogle Scholar
  34. Sagan C, Toon OB, Pollack JB (1979) Anthropogenic albedo changes and the Earth’s climate. Science 206:1363–1368CrossRefGoogle Scholar
  35. Shabanov NV, Dong H, Wenze Y, Tan B, Knyazikhin Y, Myneni RB, Ahl DE, Gower ST, Huete AR, Aragao LEOC, Shimabukuro YE (2005) Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf forests. IEEE T Geosci Remote 43:1855–1865CrossRefGoogle Scholar
  36. Silva MES, Rocha RP, Pereira G (2015) Local and remote climatic impacts due to land use degradation in the Amazon Arc of Deforestation. Theor Appl Climatol 122:1–15CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Gabriel Pereira
    • 1
    Email author
  • Maria Elisa Siqueira Silva
    • 2
  • Elisabete Caria Moraes
    • 3
  • Júlio Barboza Chiquetto
    • 2
  • Francielle da Silva Cardozo
    • 4
  1. 1.Departamento de GeociênciasUniversidade Federal de São João del-ReiSão João del-ReiBrazil
  2. 2.Departamento de GeografiaUniversidade de São PauloSão PauloBrazil
  3. 3.Divisão de Sensoriamento RemotoInstituto Nacional de Pesquisas EspaciaisSão José dos CamposBrazil
  4. 4. Programa de Pós-Graduação em GeografiaUniversidade Federal de São João del-ReiSão João del-ReiBrazil

Personalised recommendations