Theoretical and Applied Climatology

, Volume 129, Issue 1–2, pp 159–170 | Cite as

Trends in evaporation of a large subtropical lake

  • Cheng Hu
  • Yongwei Wang
  • Wei Wang
  • Shoudong Liu
  • Meihua Piao
  • Wei Xiao
  • Xuhui Lee
Original Paper

Abstract

How rising temperature and changing solar radiation affect evaporation of natural water bodies remains poor understood. In this study, evaporation from Lake Taihu, a large (area 2400 km2) freshwater lake in the Yangtze River Delta, China, was simulated by the CLM4-LISSS offline lake model and estimated with pan evaporation data. Both methods were calibrated against lake evaporation measured directly with eddy covariance in 2012. Results show a significant increasing trend of annual lake evaporation from 1979 to 2013, at a rate of 29.6 mm decade−1 according to the lake model and 25.4 mm decade−1 according to the pan method. The mean annual evaporation during this period shows good agreement between these two methods (977 mm according to the model and 1007 mm according to the pan method). A stepwise linear regression reveals that downward shortwave radiation was the most significant contributor to the modeled evaporation trend, while air temperature was the most significant contributor to the pan evaporation trend. Wind speed had little impact on the modeled lake evaporation but had a negative contribution to the pan evaporation trend offsetting some of the temperature effect. Reference evaporation was not a good proxy for the lake evaporation because it was on average 20.6 % too high and its increasing trend was too large (56.5 mm decade−1).

References

  1. Abtew W (2001) Evaporation estimation for Lake Okeechobee in south Florida. J Irrig Drain Eng 127(3):140–147CrossRefGoogle Scholar
  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56. FAO, ISBN 92–5-104219-5. Google Scholar
  3. Baker JM, Griffis TJ, Ochsner TE (2012) Coupling landscape water storage and supplemental irrigation to increase productivity and improve environmental stewardship in the U.S. Midwest. Water Resour Res 48(5):2805–2814CrossRefGoogle Scholar
  4. Blanken PD, Rouse WR, Culf AD, Spence C, Boudreau LD, Jasper JN, Kochtubajda B, Schertzer WM, Marsh P, Verseghy D (2000) Eddy covariance measurements of evaporation from Great Slave lake, Northwest Territories, Canada. Water Resour Res 36(4):1069–1077CrossRefGoogle Scholar
  5. Bonan GB (1995) Sensitivity of a GCM simulation to inclusion of inland water surfaces. J Clim 8(11):2691–2704CrossRefGoogle Scholar
  6. Brutsaert W, Parlange MB (1998) Hydrologic cycle explains the evaporation paradox. Nature 396(6706):30–30CrossRefGoogle Scholar
  7. Chattopadhyay N, Hulme M (1997) Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agric For Meteorol 87(1):55–73CrossRefGoogle Scholar
  8. Cong ZT, Yang DW, Ni GH (2009) Does evaporation paradox exist in China? Hydrol Earth Syst Sci 13(3):357–366CrossRefGoogle Scholar
  9. Deng B, Liu S, Xiao W, Wang W, Jin J, Lee X (2013) Evaluation of the CLM4 lake model at a large and shallow freshwater lake. J Hydrometeorol 14(2):636–649CrossRefGoogle Scholar
  10. Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51(5):2388–2397CrossRefGoogle Scholar
  11. Dutra E, Stepanenko VM, Balsamo G, Viterbo P, Miranda P, Mironov D, Schär C (2010) An offline study of the impact of lakes on the performance of the ECMWF surface scheme. Boreal Environ Res 15(2):100–112Google Scholar
  12. Elsawwaf M, Willems P, Pagano A, Berlamont J (2010) Evaporation estimates from Nasser Lake, Egypt, based on three floating station data and Bowen ratio energy budget. Theor Appl Climatol 100(3–4):439–465CrossRefGoogle Scholar
  13. Fu G, Liu C, Chen S, Hong J (2004) Investigating the conversion coefficients for free water surface evaporation of different evaporation pans. Hydrol Process 18(12):2247–2262CrossRefGoogle Scholar
  14. Garratt JR (1992) The Atmospheric Boundary Layer. Cambridge University Press, New York, 316 ppGoogle Scholar
  15. Henneman HE, Stefan HG (1999) Albedo models for snow and ice on a freshwater lake. Cold Reg Sci Technol 29(1):31–48CrossRefGoogle Scholar
  16. Hoy RD, Stephens SK (1977) Field study of evaporation—analysis of data from Eucumbene, Cataract, Manton and Mundaring. Aust Water Resour Council Tech Pap 21Google Scholar
  17. IPCC (2013) Climate change 2013: the physical science basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. . Cambridge University Press, New York, p. 1552Google Scholar
  18. Johnson F, Sharma A (2010) A comparison of Australian open water body evaporation trends for current and future climates estimated from Class A evaporation pans and general circulation models. J Hydrometeorol 11(1):105–121CrossRefGoogle Scholar
  19. Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Gordon B, Cescatti A, Chen J, Jeu RD, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467(7318):951–954CrossRefGoogle Scholar
  20. Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. Am Soc Civil Eng Google Scholar
  21. Katsaros KB, McMurdie LA, Lind RJ, DeVault JE (1985) Albedo of a water surface, spectral variation, effects of atmospheric transmittance, sun angle and wind speed. J Geophys Res Oceans (19782012) 90(C4):7313–7321Google Scholar
  22. Kendall MG (1975) Rank correlation methods. Charles Griffin, London, pp 202Google Scholar
  23. Kennedy AD, Dong X, Xi B, Xie S, Zhang Y, Chen J (2011) A comparison of MERRA and NARR reanalyses with the DOE ARM SGP data. J Clim 24(17):4541–4557CrossRefGoogle Scholar
  24. Laird NF, Kristovich DA (2002) Variations of sensible and latent heat fluxes from a Great Lakes buoy and associated synoptic weather patterns. J Hydrometeorol 3(1):3–12CrossRefGoogle Scholar
  25. Lenters JD, Kratz TK, Bowser CJ (2005) Effects of climate variability on lake evaporation: results from a long-term energy budget study of Sparkling Lake, northern Wisconsin (USA). J Hydrol 308(1):168–195CrossRefGoogle Scholar
  26. Lee X, Liu S, Xiao W, Wang W, Gao Z, Cao C, Hu C, Hu Z, Shen S, Wang Y, Wen X, Xiao Q, Xu J, Yang J, Zhang M (2014) The Taihu eddy flux network: an observational program on energy, water, and greenhouse gas fluxes of a large freshwater lake. Bull Am Meteorol Soc 95(10):1583–1594CrossRefGoogle Scholar
  27. Lim WH, Roderick ML (2012) A framework for upscaling short-term process-level understanding to longer time scales. Hydrol Earth Syst Sci Discuss 9(5):6203–6224CrossRefGoogle Scholar
  28. Liu H, Zhang Y, Liu S, Jiang H, Sheng L, Williams QL (2009) Eddy covariance measurements of surface energy budget and evaporation in a cool season over southern open water in Mississippi. J Geophys Res Atmos 114(D4):83–84Google Scholar
  29. Mann HB (1945) Nonparametric tests against trend. Econ J Econ Soc 13(3):245–259Google Scholar
  30. McJannet DL, Cook FJ, Burn S (2013) Comparison of techniques for estimating evaporation from an irrigation water storage. Water Resour Res 49(3):1415–1428CrossRefGoogle Scholar
  31. Nordbo A, Launiainen S, Mammarella I, Leppäranta M, Huotari J, Ojala A, Vesala T (2011) Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. J Geophys Res Atmos 116(D2):3–25CrossRefGoogle Scholar
  32. Peterson TC, Golubev VS, Groisman PY (1995) Evaporation losing its strength. Nature 377(6551):687–688CrossRefGoogle Scholar
  33. Pinker RT, Zhang B, Dutton EG (2005) Do satellites detect trends in surface solar radiation? Science 308(5723):850–854CrossRefGoogle Scholar
  34. Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2):81–92CrossRefGoogle Scholar
  35. Rayner DP (2007) Wind run changes: the dominant factor affecting pan evaporation trends in Australia. J Clim 20(14):3379–3394CrossRefGoogle Scholar
  36. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G, Bloom S, Chen J, Collins D, Conaty A, Arlindo DS, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Jack W (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648CrossRefGoogle Scholar
  37. Rong Y, Su H, Zhang R, Duan Z (2013) Effects of climate variability on evaporation in Dongping Lake, China, during 2003–2010. Adv Meteorol 65(19):153–156Google Scholar
  38. Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science 298(5597):1410–1411Google Scholar
  39. Roderick ML, Farquhar GD (2006) A physical analysis of changes in Australian pan evaporation. Land & Water Australia Technical Report ANU49, The Australian National University, Canberra, Australia.Google Scholar
  40. Roderick ML, Rotstayn LD, Farquhar GD, Hobbins MT (2007) On the attribution of changing pan evaporation. Geophys Res Lett 34(17):251–270CrossRefGoogle Scholar
  41. Rosenberry DO, Sturrock AM, Winter TC (1993) Evaluation of the energy budget method of determining evaporation at Williams Lake, Minnesota, using alternative instrumentation and study approaches. Water Resour Res 29(8):2473–2483CrossRefGoogle Scholar
  42. Rosenberry DO, Winter TC, Buso DC, Likens GE (2007) Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA. J Hydrol 340:149–166CrossRefGoogle Scholar
  43. Subin ZM, Murphy LN, Li F, Bonfils C, Riley WJ (2012a) Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: analyses in the Community Earth System Model 1 (CESM1). Tellus A 64(3):53–66Google Scholar
  44. Subin ZM, Riley WJ, Mironov D (2012b) An improved lake model for climate simulations: model structure, evaluation, and sensitivity analyses in CESM1. J Adv Modeling Earth Syst 4(1):183–204Google Scholar
  45. Torcellini PA, Long N, Judkoff R (2004) Consumptive water use for US power production. Golden: National Renewable Energy Laboratory, NREL/CP-550-35190Google Scholar
  46. Twine TE, Kustas WP, Norman JM, Cook DR, Houser P, Meyers TP, Prueger JH, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103(3):279–300CrossRefGoogle Scholar
  47. Walter MT, Wilks DS, Parlange JY, Schneider RL (2004) Increasing evapotranspiration from the conterminous United States. J Hydrometeorol 5(3):405–408CrossRefGoogle Scholar
  48. Wang W, Xiao W, Cao C, Gao Z, Hu Z, Liu S, Shen S, Wang L, Xiao Q, Xu J, Yang D, Lee X (2014) Temporal and spatial variations in radiation and energy balance across a large freshwater lake in China. J Hydrol 511:811–824CrossRefGoogle Scholar
  49. Wang Y, Jiang T, Bothe O, Fraedrich K (2007) Changes of pan evaporation and reference evapotranspiration in the Yangtze River basin. Theor Appl Climatol 90(1–2):13–23CrossRefGoogle Scholar
  50. Wild M, Gilgen H, Roesch A, Ohmura A, Long CN, Dutton EG, Forgan B, Kallis A, Russak V, Tsvetkov A (2005) From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308(5723):847–850CrossRefGoogle Scholar
  51. Willmott CJ (1981) On the validation of models. Phys Geogr 2(2):184–194Google Scholar
  52. Williamson CE, Saros JE, Schindler DW (2009) Sentinels of change. Science (Washington) 323(5916):887–888CrossRefGoogle Scholar
  53. Winter TC, Rosenberry DO, Sturrock AM (1995) Evaluation of 11 equations for determining evaporation for a small lake in the north central United States. Water Resour Res 31(4):983–993CrossRefGoogle Scholar
  54. Xu CY, Gong L, Jiang T, Chen D, Singh VP (2006) Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J Hydrol 327(1):81–93CrossRefGoogle Scholar
  55. Zeng X, Shaikh M, Dai Y, Dickinson RE, Myneni R (2002) Coupling of the common land model to the NCAR community climate model. J Clim 15(14):1832–1854CrossRefGoogle Scholar
  56. Zhao L, Lee X, Liu S (2013) Correcting surface solar radiation of two data assimilation systems against FLUXNET observations in North America. J Geophys Res Atmos 118(17):9552–9564CrossRefGoogle Scholar
  57. Zhu L, Xie M, Wu Y (2010) Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau. Chin Sci Bull 55(13):1294–1303CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Cheng Hu
    • 1
    • 2
  • Yongwei Wang
    • 1
  • Wei Wang
    • 1
  • Shoudong Liu
    • 1
  • Meihua Piao
    • 1
    • 3
  • Wei Xiao
    • 1
  • Xuhui Lee
    • 1
    • 4
  1. 1.Yale-NUIST Center on Atmospheric EnvironmentNanjing University of Information Science & TechnologyNanjingChina
  2. 2.Collaborative Innovation Center of Atmospheric Environment and Equipment TechnologyNanjing University of Information Science & TechnologyNanjingChina
  3. 3.Jilin Meteorological Service CenterJilinChina
  4. 4.School of Forestry and Environmental StudiesYale UniversityNew HavenUSA

Personalised recommendations