Theoretical and Applied Climatology

, Volume 128, Issue 1–2, pp 393–405 | Cite as

Local influence of south-east France topography and land cover on the distribution and characteristics of intense rainfall cells

  • Florent RenardEmail author
Original Paper


The Greater Lyon area is strongly built up, grouping 58 communes and a population of 1.3 million in approximately 500 km2. The flood risk is high as the territory is crossed by two large watercourses and by streams with torrential flow. Floods may also occur in case of runoff after heavy rain or because of a rise in the groundwater level. The whole territory can therefore be affected, and it is necessary to possess in-depth knowledge of the depths, causes and consequences of rainfall to achieve better management of precipitation in urban areas and to reduce flood risk. This study is thus focused on the effects of topography and land cover on the occurrence, intensity and area of intense rainfall cells. They are identified by local radar meteorology (C-band) combined with a processing algorithm running in a geographic information system (GIS) which identified 109,979 weighted mean centres of them in a sample composed of the five most intense rainfall events from 2001 to 2005. First, analysis of spatial distribution at an overall scale is performed, completed by study at a more detailed scale. The results show that the distribution of high-intensity rainfall cells is spread in cluster form. Subsequently, comparison of intense rainfall cells with the topography shows that cell density is closely linked with land slope but that, above all, urbanised zones feature nearly twice as many rainfall cells as farm land or forest, with more intense intensity.


Radar Land Cover Flood Risk Urban Heat Island Cold Spot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was performed within the framework of the UMR 5600 CNRS “Environment, City, Society” (chair of research and higher education: environmental impacts) and the LABEX IMU (ANR-10-LABX-0088) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). The author wishes to thank the reviewers who helped a lot to improve the quality of this text and the canis canem edit team for the GIS advices.


  1. Anselin L (1995) Practical nonparametric statistics, 3rd edition Luc. Local Indicators of Spatial Association-LISA. Geogr Anal 27(2):93–115CrossRefGoogle Scholar
  2. Badin AL, Tarfa M, Bertrand C, Monier A, Delolme C, Geremia R, Bedell JP (2012) Microbial communities of urban stormwater sediments: the phylogenetic structure of bacterial communities varies with porosity. FEMS Microbiol Ecol 81(2):324–338CrossRefGoogle Scholar
  3. Becouze C, Wiest L, Baudot R, Bertrand-Krajewski JL, Cren-Olivé C (2011) Optimisation of pressurised liquid extraction for the ultra-trace quantification of 20 priority substances from the European Water Framework Directive in Atmospheric Particles by GC–MS and LC–FLD–MS/MS. Anal Chim Acta 693(1):47–53CrossRefGoogle Scholar
  4. Becouze-Lareure C (2012) Multi-level approach of the ecotoxicological impact of a combined sewer overflow on a peri-urban stream. J Water Resour Prot 04(11):984–992. doi: 10.4236/jwarp.2012.411114 CrossRefGoogle Scholar
  5. Beltrando G (2011) “Les climats. Processus, variabilité et risques”, 2nd edn, Armand Colin. collection U, Paris, p 286Google Scholar
  6. Bouilloud L, Delrieu G, Boudevillain B, Kirstetter PE (2010) Radar rainfall estimation in the context of post-event analysis of flash-flood events. J Hydrol 394(1):17–27CrossRefGoogle Scholar
  7. Braud I, Breil P, Thollet F, Lagouy M, Branger F, Jacqueminet C, Kermadi S, Michel K (2013) Evidence of the impact of urbanization on the hydrological regime of a medium-sized periurban catchment in France. J Hydrol 485(April):5–23. doi: 10.1016/j.jhydrol.2012.04.049 CrossRefGoogle Scholar
  8. Braud I, Ayral P-A, Bouvier C, Branger F, Delrieu G, Le Coz J, Nord G, Vandervaere J-P, Anquetin S, Adamovic M, Andrieu J, Batiot C, Boudevillain B, Brunet P, Carreau J, Confoland A, Didon-Lescot J-F, Domergue J-M, Douvinet J, Dramais G, Freydier R, Gérard S, Huza J, Leblois E, Le Bourgeois O, Le Boursicaud R, Marchand P, Martin P, Nottale L, Patris N, Renard B, Seidel J-L, Taupin J-D, Vannier O, Vincendon B, Wijbrans A (2014) Multi-scale hydrometeorological observation and modelling for flash flood understanding. Hydrol Earth Syst Sci 18:3733–3761. doi: 10.5194/hess-18-3733-2014 CrossRefGoogle Scholar
  9. Bremaud PJ, Pointin YB (1993) Forecasting heavy rainfall from rain cell motion using radar data. J Hydrol 142(1):373–389CrossRefGoogle Scholar
  10. Champeaux J-L, Dupuy P, Laurantin O, Soulan I, Tabary P, Soubeyroux J-M (2009) Les mesures de précipitations et l’estimation des lames d’eau à Météo-France : état de l’art et perspectives. Houille Blanche 28–34. doi: 10.1051/lhb/2009052
  11. Conover WJ (1980) Practical Nonparametric Statistics, 3rd Edition. Wiley, New-York, USAGoogle Scholar
  12. Daniels EE, Lenderink G, Hutjes RWA, Holtslag AaM (2015) Observed urban effects on precipitation along the Dutch West coast. Int J Climatol n/a–n/a. doi: 10.1002/joc.4458
  13. Delrieu G, Boudevillain B, Nicol J, Chapon B, Kirstetter P-E, Andrieu H, Faure D (2009) Bollène-2002 experiment: radar quantitative precipitation estimation in the Cévennes–Vivarais Region, France. J Appl Meteorol Climatol 48:1422–1447. doi: 10.1175/2008JAMC1987.1 CrossRefGoogle Scholar
  14. Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6(3):241–252CrossRefGoogle Scholar
  15. Emmanuel I, Andrieu H, Leblois E, Flahaut B (2012) Temporal and spatial variability of rainfall at the urban hydrological scale. J Hydrol 430:162–172CrossRefGoogle Scholar
  16. Fligner MA (1984) A note on two-sided distribution-free treatment versus control multiple comparisons. J Am Stat Assoc 79(385):208–211CrossRefGoogle Scholar
  17. Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701CrossRefGoogle Scholar
  18. Friedman M (1940) A comparison of alternative tests of significance for the problem of M rankings. Ann Math Stat 11(1):86–92CrossRefGoogle Scholar
  19. Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206CrossRefGoogle Scholar
  20. Getis A, Ord JK (1996) “Spatial analysis and modeling in a GIS environment.”, A Research Agenda for Geographic Information Science., pp 96–157Google Scholar
  21. González-Aparicio, I., Baklanov, A., Hidalgo, J., Korsholm, U., Nuterman, R., Mahura, A (2014) Impact of city expansion and increased heat fluxes scenarios on the urban boundary layer of Bilbao using Enviro-HIRLAM. Urban Clim., Cities and Megacities: Air Quality and Climate Impacts 10, Part 5, 831–845. doi: 10.1016/j.uclim.2014.07.010
  22. Goodchild MF, Getis A (1991) “Introduction to spatial analysis.”. In: Notes to Accompany a Workshop of the Same Name Held in Conjunction with GIS/LIS. Vol. 91Google Scholar
  23. Griffith DA (1987) “Spatial Autocorrelation”. A Primer. Association of American Geographers, Washington, DCGoogle Scholar
  24. Handwerker J (2002) Cell tracking with TRACE3D—a new algorithm. Atmos Res 61(1):15–34CrossRefGoogle Scholar
  25. Hart MA, Sailor DJ (2008) Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor Appl Climatol 95:397–406. doi: 10.1007/s00704-008-0017-5 CrossRefGoogle Scholar
  26. Hollander M, Wolfe DA (1999) Nonparametric statistical methods, 2nd edn. John Wiley and Sons, New-YorkGoogle Scholar
  27. Jacqueminet C, Kermadi S, Michel K, Béal D, Gagnage M, Branger F, Jankowfsky S, Braud I (2013) Land cover mapping using aerial and VHR satellite images for distributed hydrological modelling of periurban catchments: application to the Yzeron catchment (Lyon, France). J Hydrol 485:68–83. doi: 10.1016/j.jhydrol.2013.01.028 CrossRefGoogle Scholar
  28. Jarque CM, Bera AK (1980) Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ Lett 6(3):255–259CrossRefGoogle Scholar
  29. Johnson JT, MacKeen PL, Witt A, De Wayne M, Stumpf G, Eilts M, Thomas K (1998) The storm cell identification and tracking algorithm: an enhanced WSR-88D algorithm. Weather Forecast 13(2):263–276CrossRefGoogle Scholar
  30. Joly D, Brossard T, Cardot H, Cavailhès J, Hilal M, Wavresky P (2009) Interpolation Par Régressions Locales: application Aux Précipitations En France. L’espace Géographique 38(2):157–170CrossRefGoogle Scholar
  31. Jongman B, Koks E, Husby T, Ward P (2014) Increasing flood exposure in the Netherlands: implications for risk financing. Nat Hazards Earth Syst Sci 14(5):1245–1255. doi: 10.5194/nhess-14-1245-2014 CrossRefGoogle Scholar
  32. Kermadi S, Braud I, Jacqueminet C, Branger F, Renard F, Michel K (2012) Quels liens entre climatologie, occupation des sols et inondations dans le bassin versant de l’Yzeron (ouest lyonnais) ? Apport de l’analyse conjointe de données hydroclimatiques et d’images satellitaires très haute résolution, Climatologie, pp 83–107Google Scholar
  33. Kirstetter P-E, Gourley JJ, Hong Y, Zhang J, Moazamigoodarzi S, Langston C, Arthur A (2015) Probabilistic precipitation rate estimates with ground-based radar networks. Water Resour Res 51:1422–1442. doi: 10.1002/2014WR015672 CrossRefGoogle Scholar
  34. Kouyi Lipeme G, Bret P, Didier JM, Chocat B, Billat C (2011) The use of CFD modelling to optimise measurement of overflow rates in a downstream-controlled dual-overflow structure. Water Sci Technol 64(2):521. doi: 10.2166/wst.2011.162 CrossRefGoogle Scholar
  35. Krajewski W, Kruger A, Smith J, Lawrence R, Gunyon C, Goska R, Seo B et al (2011) Towards better utilization of NEXRAD data in hydrology: an overview of hydro-NEXRAD. J Hydroinf 13(2):255–266CrossRefGoogle Scholar
  36. Kruskal W, Wallis W (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621CrossRefGoogle Scholar
  37. Kyznarová H, Novák P (2009) CELLTRACK—convective cell tracking algorithm and its use for deriving life cycle characteristics. Atmos Res 93(1):317–327CrossRefGoogle Scholar
  38. Le Monde (2015) Alpes-Maritimes: lourd bilan après des pluies d’une intensité exceptionnelle. Sun Oct 4 2015.
  39. Lepioufle JM, Leblois E, Creutin JD (2012) Variography of rainfall accumulation in presence of advection. J Hydrol 464–465(September):494–504. doi: 10.1016/j.jhydrol.2012.07.041 CrossRefGoogle Scholar
  40. Llasat MC, Llasat-Botija M, Prat M, Porcú F, Price C, Mugnai A, Lagouvardos K et al (2010) “High-impact floods and flash floods in Mediterranean countries: The FLASH Preliminary Database”. Adv Geosci 23(March):47–55. doi: 10.5194/adgeo-23-47-2010 CrossRefGoogle Scholar
  41. Maazouzi C, Piscart C, Legier F, Hervant F (2011) Ecophysiological responses to temperature of the ‘killer shrimp’ Dikerogammarus Villosus: is the invader really stronger than the native Gammarus Pulex? Comp Biochem Physiol A Mol Integr Physiol 159(3):268–274CrossRefGoogle Scholar
  42. Mahmood R, Pielke RA, Hubbard KG, Niyogi D, Dirmeyer PA, McAlpine C, Carleton AM, Hale R, Gameda S, Beltrán-Przekurat A, Baker B, McNider R, Legates DR, Shepherd M, Du J, Blanken PD, Frauenfeld OW, Nair U s, Fall S (2014) Land cover changes and their biogeophysical effects on climate. Int J Climatol 34:929–953. doi: 10.1002/joc.3736 CrossRefGoogle Scholar
  43. Marchi L, Borga M, Preciso E, Gaume E (2010) Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J Hydrol 394(1–2):118–133. doi: 10.1016/j.jhydrol.2010.07.017 CrossRefGoogle Scholar
  44. Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27(4):286–306CrossRefGoogle Scholar
  45. Renard F (2010) Le Risque Pluvial En Milieu Urbain, De La Caractérisation de L’aléa À L’évaluation de La Vulnérabilité: Le Cas Du Grand Lyon (Rainfall Risk in Urban Areas. From Hazard Characterisation to Vulnerability Assessment : The Case of the Greater Lyon). Université Jean Moulin Lyon 3, LyonGoogle Scholar
  46. Renard F, Comby J (2010) Overview of the greater Lyon weather Radar advances from 90’s to 2008. Adv Geosci 25(March):79–83. doi: 10.5194/adgeo-25-79-2010 CrossRefGoogle Scholar
  47. Renard F, Chapon PM, Comby J (2012) Assessing the accuracy of weather radar to track intense rain cells in the greater Lyon Area, France. Atmos Res 103:4–19CrossRefGoogle Scholar
  48. Sanchez-Moreno JF, Mannaerts CM, Jetten V (2014) Influence of topography on rainfall variability in Santiago Island, Cape Verde. Int J Climatol 34:1081–1097. doi: 10.1002/joc.3747 CrossRefGoogle Scholar
  49. Schlünzen KH, Hoffmann P, Rosenhagen G, Riecke W (2010) Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg. Int J Climatol 30:1121–1136. doi: 10.1002/joc.1968 CrossRefGoogle Scholar
  50. Shapiro S, Wilk M (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611CrossRefGoogle Scholar
  51. Shastri H, Paul S, Ghosh S, Karmakar S (2015) Impacts of urbanization on Indian summer monsoon rainfall extremes. J Geophys Res Atmos 120(2):496–516. doi: 10.1002/2014JD022061 CrossRefGoogle Scholar
  52. Silverman B (1986) Density Estimation for Statistics and Data Analysis. Vol. 26. CRC press, London, UKGoogle Scholar
  53. Sindosi OA, Bartzokas A, Kotroni V, Lagouvardos K (2015) Influence of orography on precipitation amount and distribution in NW Greece: a case study. Atmos Res 152:105–122. doi: 10.1016/j.atmosres.2014.06.013 CrossRefGoogle Scholar
  54. Tabary P (2007) The new French operational radar rainfall product. Part 1: methodology. Weather Forecast 22:393–408CrossRefGoogle Scholar
  55. Tabary P, Desplats K, Do Khac K, Eideliman F, Gueguen C, Heinrich JC (2007) The new French operational radar rainfall product. Part 2: validation. Weather Forecast 22:409–427CrossRefGoogle Scholar
  56. Tarolli P, Borga M, Morin E, Delrieu G (2012) Analysis of flash flood regimes in the North-Western and South-Eastern Mediterranean Regions. Nat Hazards Earth Syst Sci 12(5):1255–1265. doi: 10.5194/nhess-12-1255-2012 CrossRefGoogle Scholar
  57. The Times (2015) Flash floods bring destruction and death to the Riviera. Mon Oct 5 2015.
  58. UNISDR (2011) Global Assessment Report on Disaster Risk Reduction. Revealing Risk, Redefining Development. United Nations International Strategy for Disaster Reduction Secretariat, Geneva, SwitzerlandGoogle Scholar
  59. Vigneau JP (2005) Climatologie. Armand Colin, Collection Campus, Paris, p 199Google Scholar
  60. Wilk K, Gray K (1970) “Processing and Analysis Techniques Used with the NSSL Weather Radar System.”. In: Preprints, 14th Conf. on Radar Meteorology. Amer. Meteor. Soc, Tucson, AZ, pp 369–374Google Scholar
  61. Yu, M., Liu, Y (2015) The possible impact of urbanization on a heavy rainfall event in Beijing. J. Geophys. Res. Atmospheres 120, 2015JD023336. doi:10.1002/2015JD023336Google Scholar
  62. Zhang CL, Chen F, Miao SG, Li QC, Xia XA, Xuan CY (2009) Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. J Geophys Res Atmos 114:D02116. doi: 10.1029/2008JD010328 Google Scholar
  63. Zhong S, Qian Y, Zhao C, Leung R, Yang, X-Q (2015) A case study of urbanization impact on summer precipitation in the Greater Beijing Metropolitan Area: urban heat island versus aerosol effects. J Geophys Res Atmospheres 2015JD023753. doi: 10.1002/2015JD023753
  64. Zoccatelli D, Borga M, Viglione A, Chirico G, Blöschl G (2011) Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response. Hydrol Earth Syst Sci 15(12):3767–3783. doi: 10.5194/hess-15-3767-2011 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Université Jean Moulin Lyon 3UMR 5600 CNRS Environnement Ville SociétéLyonFrance

Personalised recommendations