Advertisement

Theoretical and Applied Climatology

, Volume 125, Issue 3–4, pp 625–639 | Cite as

Influence of atmospheric circulation patterns on local cloud and solar variability in Bergen, Norway

  • Kajsa PardingEmail author
  • Jan Asle Olseth
  • Beate G. Liepert
  • Knut-Frode Dagestad
Original Paper

Abstract

In a previous paper, we have shown that long-term cloud and solar observations (1965–2013) in Bergen, Norway (60.39°N, 5.33°E) are compatible with a largely cloud dominated radiative climate. Here, we explicitly address the relationship between the large scale circulation over Europe and local conditions in Bergen, identifying specific circulation shifts that have contributed to the observed cloud and solar variations. As a measure of synoptic weather patterns, we use the Grosswetterlagen (GWL), a daily classification of European weather for 1881–2013. Empirical models of cloud cover, cloud base, relative sunshine duration, and normalised global irradiance are constructed based on the GWL frequencies, extending the observational time series by more than 70 years. The GWL models successfully reproduce the observed increase in cloud cover and decrease in solar irradiance during the 1970s and 1980s. This cloud-induced dimming is traced to an increasing frequency of cyclonic and decreasing frequency of anticyclonic weather patterns over northern Europe. The changing circulation patterns in winter can be understood as a shift from the negative to the positive phase of the North Atlantic and Arctic Oscillation. A recent period of increasing solar irradiance is observed but not reproduce by the GWL models, suggesting this brightening is associated with factors other than large scale atmospheric circulation, possibly decreasing aerosol loads and local cloud shifts.

Keywords

Cloud Cover Aerosol Optical Depth Weather Pattern Sunshine Duration Cloud Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alheit J, Mollmann C, Dutz J, Kornilovs G, Loewe P, Mohrholz V, Wasmund N (1980) Synchronous ecological regime shifts in the central Baltic and the North Sea in the late. ICES J Mar Sci 62:1205–1215CrossRefGoogle Scholar
  2. Ambaum M (2001) Arctic oscillation or North Atlantic oscillation? J Clim 14:3495–3507CrossRefGoogle Scholar
  3. Baur F, Hess P, Nagel H (1944) Kalender der Großwetterlagen Europas 1881–1939. Tech. rep., Forschungsinstitut für langfristige Wettervorhersage, Bad HomburgGoogle Scholar
  4. Brezowsky H, Flohn H, Hess P (1951) Some remarks on the climatology of blocking action. Tellus (1949)Google Scholar
  5. Budikova D (2012) Northern hemisphere climate variability: character, forcing mechanisms, and significance of the North Atlantic/Arctic Oscillation. Geogr Compass 7:401–422CrossRefGoogle Scholar
  6. Chiacchio M, Ewen T, Wild M, Arabini E (2010) Influence of climate shifts on decadal variations of surface solar radiation in Alaska. J Geophys Res 115:D00D21. doi: 10.1029/2009JD012533 Google Scholar
  7. de Laat A T J, Crok M (2013) A late 20th Century European climate shift: fingerprint of regional brightening? J Atmos Clim Sci 3:291–300Google Scholar
  8. Gilgen H, Roesch A, Wild M, Ohmura A (2009) Decadal changes in shortwave irradiance at the surface in the period from 1960 to 2000 estimated from Global Energy Balance Archive Data. J Geophys Res 114:D00D08. doi: 10.1029/2008JD011383 CrossRefGoogle Scholar
  9. Hanssen-Bauer I (1967) A simple model for diffusion of SO2 in Bergen. Atmos Environ 19(3):415–422. doi: 10.1016/0004-6981(85)90163-5 CrossRefGoogle Scholar
  10. Houze R (2014) Chapter 12. Clouds and precipitation associated with hills and mountains. In: Cloud dynamics, 2nd edn. Academic Press, Elsevier, AmsterdamGoogle Scholar
  11. Hurrell J W (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  12. Hurrell J W, Deser C (2009) North Atlantic climate variability: the role of the North Atlantic Oscillation. J Mar Syst 78(1):28–41CrossRefGoogle Scholar
  13. Iqbal M (1983) An introduction to solar radiation, 1st edn. Academic Press Canada, OntarioGoogle Scholar
  14. Jones P D, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int J Climatol 17:1433–1450CrossRefGoogle Scholar
  15. Kanamitsu M, Ebisuzaki W, Woollen J, Yang S K, Hnilo J J, Fiorino M, Potter G L (2002) NCEP-DOE AMIP-II Reanalysis (R-2). Bulletin of the American Meteorological Society, pp 1631–1643Google Scholar
  16. Kopp G, Lean JL (2011) A new, lower value of total solar irradiance: evidence and climate significance. Geophys Res Lett 38(1), L01706. doi: 10.1029/2010GL045777
  17. Liepert B G (2002) Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys Res Lett 29(10):1421. doi: 10.1029/2002GL014910 CrossRefGoogle Scholar
  18. Liley J B (2009) New Zealand dimming and brightening. J Geophys Res 114:D00D10. doi: 10.1029/2008JD011401 CrossRefGoogle Scholar
  19. Lund R, Reeves J (2002) Detection of undocumented changepoints: a revision of the two-phase regression model. J Clim 15:2547–2554CrossRefGoogle Scholar
  20. Olseth J A, Skartveit A (1993) Characteristics of hourly global irradiance modelled from cloud data. Solar Energy 51(3):197–204CrossRefGoogle Scholar
  21. Parding K, Olseth J A, Dagestad K F, Liepert B G (2014) Decadal variability of clouds, solar radiation and temperature at a high-latitude coastal site in Norway. Tellus B 66:25897. doi: 10.3402/tellusb.v66.25897 CrossRefGoogle Scholar
  22. Russak V (2009) Changes in solar radiation and their influence on temperature trend in Estonia (1955–2007). J Geophys Res 114:D00D01. doi: 10.1029/2008JD010613 CrossRefGoogle Scholar
  23. Stanhill G (2003) Through a glass brightly: some new light on the Campbell Stokes sunshine recorder. Weather 58 JanuaryGoogle Scholar
  24. Stanhill G, Cohen S (2001) Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric For Meteorol 107(4):255–278CrossRefGoogle Scholar
  25. Stjern C W, Kristjánsson J E, Hansen A W (2009) Global dimming and global brightening—an analysis of surface radiation and cloud cover data in northern Europe. Int J Climatol 29:643–653CrossRefGoogle Scholar
  26. Thompson D W J, Wallace J M (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature field. Geophys Res Lett 25(9):1297–1300CrossRefGoogle Scholar
  27. Thompson D W J, Wallace J M (2000) Annular mode in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  28. Werner P C, Gerstengarbe F W (2010) Katalog der Großwetterlagen Europas (1881–2009) nach Paul Hess und Helmut Brezowsky, 7. verbesserte und erganzte Auflagë. PIK report 119Google Scholar
  29. Wild M (2012) Enlightening global dimming and brightening. Bull Am Meteorol Soc 93(1):27–37. doi: 10.1175/BAMS-D-11-00074.1 CrossRefGoogle Scholar
  30. Wild M, Gilgen H, Roesch A, Ohmura A, Long C N, Dutton E G, Forgan B, Kallis A, Russak V, Tsvetkov A (2005) From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science (New York NY) 308(5723):847–850. doi: 10.1126/science.1103215. http://www.ncbi.nlm.nih.gov/pubmed/15879214 CrossRefGoogle Scholar
  31. WMO (2008) Observations of clouds. In: WMO guide to meteorological instruments and methods of observations. Part I. Measurements of meteorological variables, chap 15Google Scholar
  32. Xu L, Jinqing Z U O (2013) Impact of the North Atlantic Sea surface temperature tripole on the East Asian Summer Monsoon. Adv Atmos Sci 30(4):1173–1186. doi: 10.1007/s00376-012-2125-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Kajsa Parding
    • 1
    • 4
    Email author
  • Jan Asle Olseth
    • 1
  • Beate G. Liepert
    • 2
  • Knut-Frode Dagestad
    • 3
  1. 1.University of BergenBergenNorway
  2. 2.NorthWest Research AssociatesRedmondUSA
  3. 3.Norwegian Meteorological InstituteBergenNorway
  4. 4.Norwegian Meteorological InstituteOsloNorway

Personalised recommendations