Theoretical and Applied Climatology

, Volume 124, Issue 3–4, pp 935–944 | Cite as

Analysis of extreme rainfall in the Ebre Observatory (Spain)

  • Núria Pérez-Zanón
  • M. Carmen Casas-CastilloEmail author
  • Raúl Rodríguez-Solà
  • Juan Carlos Peña
  • Anna Rius
  • J. Germán Solé
  • Ángel Redaño
Original Paper


The relationship between maximum rainfall rates for time intervals between 5 min and 24 h has been studied from almost a century (1905–2003) of rainfall data registered in the Ebre Observatory (Tarragona, Spain). Intensity–duration–frequency (IDF) curves and their master equation for every return period in the location have been obtained, as well as the probable maximum precipitation (PMP) for all the considered durations. In particular, the value of the 1-day PMP has resulted to be 415 mm, very similar to previous estimations of this variable for the same location. Extreme rainfall events recorded in this period have been analyzed and classified according to their temporal scale. Besides the three main classes of cases corresponding to the main meteorological scales, local, mesoscale, and synoptic, a fourth group constituted by complex events with high-intensity rates for a large range of durations has been identified also, indicating the contribution of different scale meteorological processes acting together in the origin of the rainfall. A weighted intensity index taking into account the maximum rainfall rate in representative durations of every meteorological scale has been calculated for every extreme rainfall event in order to reflect their complexity.


Rainfall Event Return Period Maximum Rainfall Mesoscale Convective System Extreme Rainfall Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge Eduard Redaño for his contribution in the elaboration of figures. We also acknowledge the Servei Meteorològic de Catalunya (Generalitat de Catalunya) and Observatori de l’Ebre for providing the data analyzed in this work.


  1. Anderberg MR (1973) Cluster analysis for applications. Academic, New York, 359 pp Google Scholar
  2. Browning KA (1990) Organization of clouds and precipitation in extratropical cyclones. Extratropical cyclones. American Meteorological Society, Boston, 262 pp Google Scholar
  3. Burlando P, Rosso R (1996) Scaling and multiscaling models of depth-duration-frequency curves for storm precipitation. J Hydrol 187:45–64CrossRefGoogle Scholar
  4. Casas MC, Codina B, Redaño A, Lorente J (2004) A methodology to classify extreme rainfall events in the western Mediterranean area. Theor Appl Climatol 77:139–150CrossRefGoogle Scholar
  5. Casas MC, Herrero M, Ninyerola M, Pons X, Rodríguez R, Rius A, Redaño A (2007) Analysis and objective mapping of extreme daily rainfall in Catalonia. Int J Climatol 27:399–409CrossRefGoogle Scholar
  6. Casas MC, Rodríguez R, Nieto R, Redaño A (2008) The estimation of probable maximum precipitation: the case of Catalonia. Trends Dir Clim Res Ann N Y Acad Sci 1146:291–302CrossRefGoogle Scholar
  7. Casas MC, Rodríguez R, Redaño A (2010) Analysis of extreme rainfall in Barcelona using a microscale rain gauge network. Meteorol Appl 17:117–123, Google Scholar
  8. Chen C (1983) Rainfall intensity-duration-frequency formulas. J Hydraul Eng 109(12):1603–1621CrossRefGoogle Scholar
  9. Chow VT (1951) A general formula for hydrologic frequency analysis. Trans Am Geophys Union 32:231–237CrossRefGoogle Scholar
  10. Codina B, Aran M, Young S, Redaño A (1997) Prediction of a mesoscale convective system over Catalonia (northeastern Spain) with a nested numerical model. Meteorol Atmos Phys 62:9–22CrossRefGoogle Scholar
  11. Collier CG, Hardaker PJ (1996) Estimating probable maximum precipitation using a storm model approach. J Hydrol 183:277–306CrossRefGoogle Scholar
  12. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(Nordli O):1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  13. Council NR (1994) Estimating bounds on extreme precipitation events. National Academy Press, Washington, DCGoogle Scholar
  14. Hershfield DM (1961) Estimating the probable maximum precipitation. Proceedings American Society of Civil Engineers. J Hydraul Div 87(HY5):99–106Google Scholar
  15. Hershfield DM (1965) Method for estimating probable maximum precipitation. J Am Waterworks Assoc 57:965–972Google Scholar
  16. Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments. Cambridge University Press, Cambridge, 224 pp CrossRefGoogle Scholar
  17. Houze RA, Hobbs PV (1982) Organization and structure of precipitating cloud systems. Adv Geophys 24:225–315, Academic Press CrossRefGoogle Scholar
  18. Jansà A, Genoves A, Picornell MA, Campins J, Riosalido R, Carretero O (2001) Western Mediterranean cyclones and heavy rain. Part 2: statistical approach. Meteorol Appl 8(1):43–56CrossRefGoogle Scholar
  19. Koutsoyiannis D (1999) A probabilistic view of Hershfield’s method for estimating probable maximum precipitation. Water Resour Res 35(4):1313–1322CrossRefGoogle Scholar
  20. Koutsoyiannis D, Foufoula-Georgiu E (1993) A scaling model of storm hyetograph. Water Resour Res 29(7):2345–2361CrossRefGoogle Scholar
  21. Lanza LG, Leroy M, Alexadropoulos C, Stagi L,Wauben W (2005) WMO laboratory intercomparison of rainfall intensity gauges—final report. IOM Report No. 84, WMO/TD No. 1304, 2005Google Scholar
  22. Llasat MC, Llasat-Botija M, Petrucci O, Pasqua AA, Rossello J, Vinet F, Boissier L (2013) Towards a database on societal impact of Mediterranean floods within the framework of the HYMEX project. Nat Hazards Earth Syst Sci 13(5):1337–1350. doi: 10.5194/nhess-13-1337-2013 CrossRefGoogle Scholar
  23. Lorente J, Redaño A (1990) Rainfall rate distribution in a local scale: the case of Barcelona City. Theor Appl Climatol 41:23–32CrossRefGoogle Scholar
  24. Martínez MD, Lana X, Burgueño A, Serra C (2007) Spatial and temporal daily rainfall regime in Catalonia (NE Spain) derived from four precipitation indices, years 1950–2000. Int J Climatol 27:123–138CrossRefGoogle Scholar
  25. Menabde M, Seed A, Pegram G (1999) A simple scaling model for extreme rainfall. Water Resour Res 35(1):335–339CrossRefGoogle Scholar
  26. Pinto JG, Ulbrich S, Parodi A, Rudari R, Boni G, Ulbrich U (2013) Identification and ranking of extraordinary rainfall events over northwest Italy: the role of Atlantic moisture. J Geophys Res-Atmos 118(5):2085–2097CrossRefGoogle Scholar
  27. Rakhecha PR, Deshpande NR, Soman MK (1992) Probable maximum precipitation for a 2-day duration over the Indian peninsula. Theor Appl Climatol 45:277–283CrossRefGoogle Scholar
  28. Rodríguez R, Navarro X, Casas MC, Ribalaygua J, Russo B, Pouget L, Redaño A (2014) Influence of climate change on IDF curves for the metropolitan area of Barcelona (Spain). Int J Climatol 34(3):643–654. doi: 10.1002/joc.3712, CrossRefGoogle Scholar
  29. Romero R, Ramis C, Guijarro JA (1999) Daily rainfall patterns in the Spanish Mediterranean area: an objective classification. Int J Climatol 19:95–112CrossRefGoogle Scholar
  30. Salas JD, Gavilán G, Salas FR, Julien PY, Abdullah J (2014) Uncertainty of the PMP and PMF. Handbook of engineering hydrology: modeling, climate change, and variability, Book II: 575–603. Edited by Saeid Eslamian. CRC Press, Taylor & Francis GroupGoogle Scholar
  31. Schreiner LC, Reidel JT (1978) Probable maximum precipitation estimates. United States east of 105th meridian. Hydrometeorological Report 51, U. S. National Weather Service, Washington DCGoogle Scholar
  32. Thunis P, Bornstein R (1996) Hierarchy of mesoscale flow assumptions and equations. J Atmos Sci 53(3):380–397CrossRefGoogle Scholar
  33. Wiesner C (1970) Hydrometeorology. Chapman and Hall, London, 232 pp Google Scholar
  34. World Meteorological Organization (1986) Manual for estimation of probable maximum precipitation. Operational Hydrology Report 1, 2nd edition, Publication 332, 269 ppGoogle Scholar
  35. Yue S, Pilon P, Cavadias G (2002) Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259:254–271CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Núria Pérez-Zanón
    • 1
  • M. Carmen Casas-Castillo
    • 2
    Email author
  • Raúl Rodríguez-Solà
    • 3
  • Juan Carlos Peña
    • 4
  • Anna Rius
    • 4
  • J. Germán Solé
    • 5
  • Ángel Redaño
    • 6
  1. 1.Center for Climate Change (C3), Campus Terres de l’EbreUniversitat Rovira i VirgiliTortosaSpain
  2. 2.Departament de Física i Enginyeria Nuclear (FEN), EETUniversitat Politècnica de Catalunya · BarcelonaTech (UPC)TerrassaSpain
  3. 3.Departament de Física i Enginyeria Nuclear (FEN), EPSEVGUniversitat Politècnica de Catalunya · BarcelonaTech (UPC)Vilanova i la GeltrúSpain
  4. 4.Servei Meteorològic de CatalunyaBarcelonaSpain
  5. 5.Observatori de l’Ebre, CSIC-URLRoquetesSpain
  6. 6.Departament d’Astronomia i Meteorologia (DAM), Facultat de FísicaUniversitat de Barcelona (UB)BarcelonaSpain

Personalised recommendations