Theoretical and Applied Climatology

, Volume 123, Issue 1–2, pp 23–41 | Cite as

Assessing vegetation response to precipitation in northwest Morocco during the last decade: an application of MODIS NDVI and high resolution reanalysis data

  • M. Otto
  • C. Höpfner
  • J. Curio
  • F. Maussion
  • D. Scherer
Original Paper


Understanding vegetation dynamics provides information on changes in land cover that can directly be related to regional changes in the climate system. In data-sparse regions, i.e. northwest Morocco studies are limited by the availability of comprehensive information on precipitation. We extracted precipitation data of high spatiotemporal resolution (2 km, 1 day) from the Northwest Africa Reanalysis (NwAR) and gridded Normalized Difference Negetation Index (NDVI) of the Moderate Resolution Imaging Spectroradiometer (MODIS) that cover northwest Morocco over ten hydrological years (September 2000 to August 2010). The results are based on a sequence of linear regression analyses. The mean precipitation of different input timeframes is systematically applied as the predicting variables to the mean NDVI of the growing seasons. Results show that 73 % of the variance in mean NDVI is explained by the variance in mean precipitation at the beginning of the growing season (November to the end of December). The results also show that 75 % of the variance in the mean NDVI of agriculturally used areas is explained by the variance in mean precipitation of beginning September to the end of December. Potentially irrigated land cover of low to medium explained variance but of a high seasonal range in NDVI cover about 14 % of the study region. We conclude that a considerable part of agricultural used areas are still potentially rain-fed. The applied methods and especially the re-analysed precipitation data of high spatiotemporal resolution open a new quality of analysis valuable for, e.g. monitoring aspects, policy decisions or regulatory actions.


Land Cover Grid Point Precipitation Data Land Cover Type Vegetation Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was funded by the German Federal Ministry of Education and Research (BMBF) within the project “Urban Agriculture as an Integrative Factor of Climate-Optimised Urban Development, Casablanca” (grant number 01LG0504A1). This project is part of the megacity research programme “Research for the Sustainable Development of Megacities of Tomorrow, Focus: Energy- and climate-efficient structures in urban growth centres”. We thank Mr. Christopher Brown for revisions and advice.


  1. Al-Bakri JT, Suleiman AS (2004) NDVI response to rainfall in different ecological zones in Jordan. Int J Remote Sens 25:3897–3912. doi: 10.1080/01431160310001654428 CrossRefGoogle Scholar
  2. Balaghi R, Tychon B, Eerens H, Jlibene M (2008) Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco. Int J Appl Earth Observation and Geoinformation 10:438–452. doi: 10.1016/j.jag.2006.12.001 CrossRefGoogle Scholar
  3. Bolton DK, Friedl M (2013) Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric For Meteorol 173:74–84. doi: 10.1016/j.agrformet.2013.01.007 CrossRefGoogle Scholar
  4. Bromwich DH, Bai LH, Bjarnason GG (2005) High-resolution regional climate simulations over Iceland using Polar MM5. Mon Weather Rev 133(12):3527–3547. doi: 10.1175/MWR3168.1 CrossRefGoogle Scholar
  5. Chamaille-Jammes S, Fritz H, Murindagomo F (2006) Spatial patterns of the NDVI-rainfall relationship at the seasonal and interannual time scales in an African savanna. Int J Remote Sens 27:5185–5200. doi: 10.1080/01431160600702392 CrossRefGoogle Scholar
  6. Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129(4):569–585CrossRefGoogle Scholar
  7. Chu D, Lu L, Zhang T (2007) Sensitivity of normalized difference vegetation index (NDVI) to seasonal and interannual climate conditions in the Lhasa area, Tibetan plateau, China. Arct Antarctic Alp Res 39:635–641. doi: 10.1657/1523-0430(07-501)[CHU]2.0.CO;2 CrossRefGoogle Scholar
  8. Davenport ML, Nicholson SE (1993) On the relation between rainfall and the normalized difference vegetation index for diverse vegetation types in East Africa. Int J Remote Sens 14:2369–2389. doi: 10.1080/01431169308954042 CrossRefGoogle Scholar
  9. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmospheric Sciences 46(20):3077–3107. doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2 CrossRefGoogle Scholar
  10. du Plessis WP (1999) Linear regression relationships between NDVI, vegetation and rainfall in Etosha National Park, Namibia. JArid Environments 42:235–260. doi: 10.1006/jare.1999.0505 CrossRefGoogle Scholar
  11. Eklundh L (1998) Estimating relations between AVHRR NDVI and rainfall in East Africa at 10-day and monthly time scales. Int J Remote Sens 19:563–568. doi: 10.1080/014311698216198 CrossRefGoogle Scholar
  12. Fang J, Piao S, Zhou L, He J, Wei F, Myneni RB, Tucker CJ, Tan K (2005) Precipitation patterns alter growth of temperate vegetation. Geophys Res Lett 32, L21411. doi: 10.1029/2005GL024231 CrossRefGoogle Scholar
  13. Gaughan AE, Stevens FR, Gibbes C, Southworth J, Binford MW (2012) Linking vegetation response to seasonal precipitation in the Okavango-Kwando-Zambezi catchment of southern Africa. Int J Remote Sens 33:6783–6804. doi: 10.1080/01431161.2012.692831 CrossRefGoogle Scholar
  14. Grell G, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29(14):1693. doi: 10.1029/2002GL015311 CrossRefGoogle Scholar
  15. Herrmann SM, Anyamba A, Tucker CJ (2005) Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Global Environmental Change-Human and Policy Dimensions 15:394–404. doi: 10.1016/j.gloenvcha.2005.08.004 CrossRefGoogle Scholar
  16. Hess T, Stephens W, Thomas G (1996) Modelling NDVI from decadal rainfall data in the North East Arid Zone of Nigeria. J Environ Manag 48:249–261. doi: 10.1006/jema.1996.0076 CrossRefGoogle Scholar
  17. Hielkema JU, Prince SD, Astle WL (1986) Rainfall and vegetation monitoring in the Savanna Zone of the Democratic Republic of Sudan using the NOAA Advanced Very High Resolution Radiometer. Int J Remote Sens 7:1499–1513. doi: 10.1080/01431168608948950 CrossRefGoogle Scholar
  18. Hong S-Y, Dudhia J, Chen S-H (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132(1):103–120CrossRefGoogle Scholar
  19. Höpfner C, Scherer D (2011) Analysis of vegetation and land cover dynamics in north-western Morocco during the last decade using MODIS NDVI time series data. Biogeosciences 8:3359–3373. doi: 10.5194/bg-8-3359-2011 CrossRefGoogle Scholar
  20. Huete A, Justice C, Van Leuwen W (1999) MODIS vegetation index (MOD13). Algorithm theoretical basis document version 3. NASA 129 pp. available at:, access: 28 April 2011
  21. Iwasaki H (2009) NDVI prediction over Mongolian grassland using GSMaP precipitation data and JRA-25/JCDAS temperature data. J Arid Environ 73:557–562. doi: 10.1016/j.jaridenv.2008.12.007 CrossRefGoogle Scholar
  22. Jobbagy EG, Osvaldo ES, Paruelo JM (2002) Patterns and controls of primary production in the Patagonian steppe: a remote sensing approach. Ecology 83:307–319. doi: 10.1890/0012-9658(2002)083[0307:PACOPP]2.0.CO;2 Google Scholar
  23. Jackson RD, Huete AR (1991) Interpreting vegetation indices. Prev Vet Med 11:185–200. doi: 10.1016/S0167-5877(05)80004-2 CrossRefGoogle Scholar
  24. Janjic ZI (2002) Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model. Tech Rep 437Google Scholar
  25. Jarlan L, Driouech F, Tourre Y, Duchemin B, Bouyssié M, Abaoui J, Ouldbba A, Mokssit A, Chehbouni G (2013) Spatio-temporal variability of vegetation cover over Morocco (1982–2008): linkages with large scale climate and predictability. Int J Climatol 34(4):1245–1261CrossRefGoogle Scholar
  26. Kerr YH, Imbernon J, Dedieu G, Hautecoeur O, Lagouarde JP, Seguin B (1989) NOAA AVHRR and its uses for rainfall and evapotranspiration monitoring. Int J Remote Sens 10:847–854. doi: 10.1080/01431168908903925 CrossRefGoogle Scholar
  27. Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound-Layer Meteorol 101(3):329–358CrossRefGoogle Scholar
  28. Li J, Lewis J, Rowland J, Tappan G, Tieszen LL (2004) Evaluation of land performance in Senegal using multi-temporal NDVI and rainfall series. J Arid Environ 59:463–480. doi: 10.1016/j.jaridenv.2004.03.019 CrossRefGoogle Scholar
  29. Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Worthy LD (2006) Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens Environ 105:142–154. doi: 10.1016/j.rse.2006.06.018 CrossRefGoogle Scholar
  30. Malo AR, Nicholson SE (1990) A study of rainfall and vegetation dynamics in the African Sahel using normalized difference vegetation index. J Arid Environ 19:1–24Google Scholar
  31. Martiny N, Richard Y, Camberlin P (2005) Interannual persistence effects in vegetation dynamics of semi-arid Africa. Geophys Res Lett 32, L24403. doi: 10.1029/2005GL024634 CrossRefGoogle Scholar
  32. Maussion F, Scherer D, Finkelnburg R, Richters J, Yang W, Yao T (2011) WRF simulation of a precipitation event over the Tibetan Plateau, China—an assessment using remote sensing and ground observations. Hydrol Earth Syst Sci 15:1795–1817. doi: 10.5194/hess-15-1795-2011 CrossRefGoogle Scholar
  33. Maussion F, Scherer D, Mölg T, Collier E, Curio J, Finkelnburg R (2014) Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J Clim. doi: 10.1175/JCLI-D-13-00282.1 Google Scholar
  34. Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res-Atmos 102:16663–16682. doi: 10.1029/97JD00237 CrossRefGoogle Scholar
  35. Nicholson SE, Davenport ML, Malo A (1990) A comparison of the vegetation response to rainfall in Sahel and East Africa, using normalized vegetation index from NOAA AVHRR. Climate Change 17:209–241. doi: 10.1007/BF00138369 CrossRefGoogle Scholar
  36. Nicholson SE, Farrar TJ (1994) The influence of soil type on the relationship between NDVI, rainfall and soil moisture in semiarid Botswana. I. NDVI response to rainfall. Remote Sens Environ 50:107–120. doi: 10.1016/0034-4257(94)90038-8 CrossRefGoogle Scholar
  37. Omuto CT, Vargas RR, Alim MS, Paron P (2010) Mixed-effects modelling of time series NDVI-rainfall relationship for detecting human-induced loss of vegetation cover in drylands. J Arid Environ 74:1552–1563. doi: 10.1016/j.jaridenv.2010.04.001 CrossRefGoogle Scholar
  38. Penuelas J, Filella I, Zhang XY, Llorens L, Ogaya R, Lloret F, Comas P, Estiarte M, Terradas J (2004) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 161:837–846. doi: 10.1111/j.1469-8137.2004.01003.x CrossRefGoogle Scholar
  39. Pinter PJ, Hatfield JL, Schepers JS, Barnes EM, Moran MS, Daughtry CST, Upchurch DR (2003) Remote sensing for crop management. Photogrammetric Engineering Remote Sens 69(6):647–664CrossRefGoogle Scholar
  40. Proud SR, Rasmussen LV (2011) The influence of seasonal rainfall upon Sahel vegetation. Remote Sensing Letters 2:241–249. doi: 10.1080/01431161.2010.515268 CrossRefGoogle Scholar
  41. Puigdefabregas J, Mendizabal T (1998) Perspectives on desertification: western Mediterranean. JArid Environ 39:209–224. doi: 10.1006/jare.1998.0401 Google Scholar
  42. Reed B, Brown J, Vanderzee D, Loveland T, Merchant J, Ohlen D (1994) Measuring phenological variability from satellite imagery. J Vegetation Sci 5:703–714. doi: 10.2307/3235884 CrossRefGoogle Scholar
  43. Richard Y, Poccard I (1998) A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations in Southern Africa. Int J Remote Sens 19:2907–2920. doi: 10.1080/014311698214343 CrossRefGoogle Scholar
  44. Schmidt H, Gitelson A (2000) Temporal and spatial vegetation cover changes in Israeli transition zone: AVHRR-based assessment of rainfall impact. Int J Remote Sens 21:997–1010. doi: 10.1080/014311600210399 CrossRefGoogle Scholar
  45. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2013) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoretical App Climatology 115(1–2):15–40. doi: 10.1007/s00704-013-0860-x Google Scholar
  46. Seiler RA, Kogan F, Wei G, Vinocur M (2007) Seasonal and interannual responses of the vegetation and production of crops in Cordoba–Argentina assessed by AVHRR derived vegetation indices. Advances Space Res 39(1):88–94. doi: 10.1016/j.asr.2006.05.024 CrossRefGoogle Scholar
  47. Sellers P (1985) Canopy reflectance, photosynthesis and transpiration. Int J Remote Sens 6:1335–1372CrossRefGoogle Scholar
  48. Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485. doi: 10.1016/ CrossRefGoogle Scholar
  49. Sobrino JA, Raissouni N (2000) Toward remote sensing methods for land cover dynamic monitoring : application to Morocco. Int J Remote Sens 21:353–366CrossRefGoogle Scholar
  50. Tanaka S, Sugimura T, Mishima S (2000) Monitoring of vegetation extent around Kitui pilot forest (afforestation test site) in Kenya with rainfall by satellite data. Remote Sens Land Surf Characterisation 26:1039–1042. doi: 10.1016/S0273-1177(99)01112-6 Google Scholar
  51. Timbal B, Arblaster JM (2006) Land cover change as an additional forcing to explain the rainfall decline in the south west of Australia. Geophys Res Lett 33(7)L07717. doi:  10.1029/2005gl025361
  52. Thompson G, Field PR, Rasmussen RM, Hall WD (2008) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon Weather Rev 136(12):5095–5115CrossRefGoogle Scholar
  53. Udelhoven T, Stellmes M, Del Barrio G, Hill J (2009) Assessment of rainfall and NDVI anomalies in Spain (1989–1999) using distributed lag models. Int J Remote Sens 30(8):1961–1967. doi: 10.1080/01431160802546829 CrossRefGoogle Scholar
  54. Vanacker V, Linderman M, Lupo F, Flasse S, Lambin E (2005) Impact of short-term rainfall fluctuation on interannual land cover change in sub-Saharan Africa. Glob Ecology Biogeography 14(2):123–135. doi: 10.1111/j.1466-822X.2005.00136.x CrossRefGoogle Scholar
  55. Wang J, Price KP, Rich PM (2001) Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. Int J Remote Sens 22(18):3827–3844. doi: 10.1080/01431160010007033 CrossRefGoogle Scholar
  56. WIST (Warehouse Inventory Search Tool) available at: Accessed 21 February 2011
  57. Zhang XY, Friedl MA, Schaaf CB, Strahler AH, Liu Z (2005) Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments. J Geophysical Res-Atmos 110, D12103. doi: 10.1029/2004JD005263 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • M. Otto
    • 1
  • C. Höpfner
    • 1
  • J. Curio
    • 1
  • F. Maussion
    • 2
  • D. Scherer
    • 1
  1. 1.Chair of Climatology, Department of EcologyTechnische Universität BerlinBerlinGermany
  2. 2.Institute of Meteorology and Geophysics InnsbruckUniversity of InnsbruckInnsbruckAustria

Personalised recommendations