Theoretical and Applied Climatology

, Volume 122, Issue 1–2, pp 337–352 | Cite as

Using fuzzified regression trees for statistical downscaling and regionalization of near surface temperatures in complex terrain

A case study from Khumbu Himal
  • Lars GerlitzEmail author
Original Paper


High mountain regions are characterized by a large climatic heterogeneity which is not sufficiently represented by state-of-the-art climate models or reanalysis products. With regard to the increasing demand for high-resolution temperature data for climate impact studies, a statistical approach is presented, which allows estimating high-resolution near-surface temperature fields in complex terrain. High-resolution free air temperatures are derived from climate model data by considering the current stratification of the atmosphere. The residuals compared with in situ observation of near-surface temperatures are subsequently analyzed using a regression tree approach with suitable large-scale atmospheric and local-scale terrain parameters as predictors. The model identifies the predominant synoptic and topographic controls for the local-scale distribution of residuals and can be used to regionalize residual fields with high spatial resolution. The disadvantage that a tree-structured model generates stepwise constant predictant values can be overcome by integrating a fuzzifying routine. A fuzzified regression tree model was applied to analyze and predict the spatial and temporal variability of topographically induced temperatures for a target area in the Central Himalayas. Large-scale atmospheric variables, derived from the ERA-Interim reanalysis, and local terrain parameters were used as potential predictors. The model sufficiently identified the main influencing factors for the temperature heterogeneity. The potential solar insolation was found to be the predominant predictor, but also, hydroclimatic large-scale variables were found to be crucial. During clear nights, the model showed a distinct elevation dependency of residuals which indicates the importance of nocturnal cold air drainage and accumulation for the local-scale temperature distribution in the highly structured target area.


Regression Tree Shuttle Radar Topography Mission Solar Insolation Reanalysis Product Impurity Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The ERA-Interim reanalysis fields were freely provided by the ECMWF. The author appreciates the supply of meteorological observations by the Department of Hydrology and Meteorology (Kathmandu, Nepal) and the Ev-K2-CNR project (Bergamo, Italy).


  1. Bao X, Zhang F (2012) Evaluation of NCEP/CFSR, NCEP/NCAR, ERA-Interim and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J Clim. doi:  10.1175/JCLI-D-12-00056.1
  2. Berrisford P, Dee D, Fielding K, et al. (2009) The ERA-Interim Archive. In: ERA report series. Accessed 15 Jan 2013
  3. Böhner J (2006) General climatic controls and topoclimatic variations in Central and High Asia. Boreas 35:279–295. doi: 10.1080/03009480500456073 CrossRefGoogle Scholar
  4. Böhner J, Antonić O (2009) Land-surface parameters specific to topo-climatology. In: Tomislav Hengl and Hannes I. Reuter (eds) Developments in soil science. Elsevier, Oxford, p 195–226Google Scholar
  5. Böhner J, Lehmkuhl F (2005) Environmental change modelling for Central and High Asia: Pleistocene, present and future scenarios. Boreas 34:220–231CrossRefGoogle Scholar
  6. Bolch T, Kulkarni A, Kääb A et al (2012) The state and fate of Himalayan glaciers. Science 336:310–314CrossRefGoogle Scholar
  7. Breiman L (1984) Classification and regression trees. Wadsworth International Group, BelmontGoogle Scholar
  8. Busuioc A, Tomozeiu R, Cacciamani C (2008) Statistical downscaling model based on canonical correlation analysis for winter extreme precipitation events in the Emilia-Romagna region. Int J Climatol 28:449–464CrossRefGoogle Scholar
  9. Chung U, Seo HH, Hwang KH et al (2006) Minimum temperature mapping over complex terrain by estimating cold air accumulation potential. Agric For Meteorol 137:15–24. doi: 10.1016/j.agrformet.2005.12.011 CrossRefGoogle Scholar
  10. Costa SMS, Shine KP (2012) Outgoing longwave radiation due to directly transmitted surface emission. J Atmos Sci 69:1865–1870. doi: 10.1175/JAS-D-11-0248.1 CrossRefGoogle Scholar
  11. Coulter JD (1967) Mountain climate. Proceedings New Zealand Ecologocal Society 14:40–57Google Scholar
  12. De’ath G (2002) Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83:1105–1117. doi: 10.2307/3071917 Google Scholar
  13. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  14. Eccel E, Ghielmi L, Granitto P et al (2007) Prediction of minimum temperatures in an alpine region by linear and non-linear post-processing of meteorological models. Nonlinear Process Geophys 14:211–222CrossRefGoogle Scholar
  15. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813. doi: 10.1111/j.1365-2656.2008.01390.x CrossRefGoogle Scholar
  16. Enke W, Spegat A (1997) Downscaling climate model outputs into local and regional weather elements by classification and regression. Clim Res 08:195–207. doi: 10.3354/cr008195 CrossRefGoogle Scholar
  17. Fan L, Chen D, Congbin F, Zhongwei Y (2013) Statistical downscaling of summer temperature extremes in northern China. Adv Atmos Sci 30:1085–1095. doi: 10.1007/s00376-012-2057-0 CrossRefGoogle Scholar
  18. Fridley JD (2009) Downscaling climate over complex terrain: high finescale (<1000 m) spatial variation of near-ground temperatures in a montane forested landscape (Great Smoky Mountains). J Appl Meteorol Climatol 48:1033–1049. doi: 10.1175/2008JAMC2084.1 CrossRefGoogle Scholar
  19. Gao L, Bernhardt M, Schulz K (2012) Elevation correction of ERA-Interim temperature data in complex terrain. Hydrol Earth Syst Sci 16:4661–4673. doi: 10.5194/hess-16-4661-2012 CrossRefGoogle Scholar
  20. Gerlitz L, Conrad O, Thomas A, Bhner J (2014) Warming patterns over the Tibetan Plateau and adjacent lowlands derived from elevation- and bias-corrected ERA-Interim data. Clim Res 58:235–246. doi: 10.3354/cr01193 CrossRefGoogle Scholar
  21. Huth R (2002) Statistical downscaling of daily temperature in Central Europe. Journal Clim 15:1731–1742. doi: 10.1175/1520-0442(2002)015<1731:SDODTI>2.0.CO;2 CrossRefGoogle Scholar
  22. Jin-Huan ZHU, Shu-Po MA, Han ZOU et al (2013) Evaluation of reanalysis products with in situ GPS sounding observations in the Eastern Himalayas. Atmos Ocean Sci Lett 7:17–22CrossRefGoogle Scholar
  23. Kattel D, Yao T, Yang K et al (2013) Temperature lapse rate in complex mountain terrain on the southern slope of the central Himalayas. Theor Appl Climatol 113:671–682. doi: 10.1007/s00704-012-0816-6 CrossRefGoogle Scholar
  24. Li X, Sailor D (2000) Application of tree-structured regression for regional precipitation prediction using general circulation model output. Clim Res 16:17–30. doi: 10.3354/cr016017 CrossRefGoogle Scholar
  25. Lundquist JD, Cayan DR (2007) Surface temperature patterns in complex terrain: daily variations and long-term change in the central Sierra Nevada, California. J Geophys Res-Atmos. doi:  10.1029/2006JD007561
  26. Mahrt L (2006) Variation of surface air temperature in complex terrain. J Appl Meteorol Climatol 45:1481–1493. doi: 10.1175/JAM2419.1 CrossRefGoogle Scholar
  27. Minder JR, Mote PW, Lundquist JD (2010) Surface temperature lapse rates over complex terrain: lessons from the Cascade Mountains. J Geophys Res 115:D14122CrossRefGoogle Scholar
  28. Pape R, Wundram D, Lffler J (2009) Modelling near-surface temperature conditions in high mountain environments: an appraisal. Clim Res 39:99–109. doi: 10.3354/cr00795 CrossRefGoogle Scholar
  29. Pepin N, Losleben M (2002) Climate change in the Colorado Rocky Mountains: free air versus surface temperature trends. Int J Climatol 22:311–329. doi: 10.1002/joc.740 CrossRefGoogle Scholar
  30. Pouteau R, Rambal S, Ratte J-P et al (2011) Downscaling MODIS-derived maps using GIS and boosted regression trees: the case of frost occurrence over the arid Andean highlands of Bolivia. Remote Sens Environ 115:117–129. doi: 10.1016/j.rse.2010.08.011 CrossRefGoogle Scholar
  31. Robert G. Stone (1934) The history of mountain meteorology in the United States and the Mount Washington Observatory. Eos Trans AGU 15:124–133Google Scholar
  32. Siciliano R, Mola F (2000) Multivariate data analysis and modeling through classification and regression trees. Comput Stat Data Anal 32:285–301. doi: 10.1016/S0167-9473(99)00082-1 CrossRefGoogle Scholar
  33. Suárez A, Lutsko JF (1999) Globally optimal fuzzy decision trees for classification and regression. Pattern Anal Mach Intell, IEEE Trans on 21:1297–1311CrossRefGoogle Scholar
  34. Sun J, Burns SP, Delany AC et al (2003) Heat balance in the nocturnal boundary layer during CASES-99. J Appl Meteorol 42:1649–1666. doi: 10.1175/1520-0450 CrossRefGoogle Scholar
  35. Ueno K, Toyotsu K, Bertolani L, Tartari G (2008) Stepwise onset of monsoon weather observed in the Nepal Himalaya. Mon Weather Rev 136:2507–2522. doi: 10.1175/2007MWR2298.1 CrossRefGoogle Scholar
  36. Vrac M, Marbaix P, Paillard D, Naveau P (2007) Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe. Clim Past 3:669–682CrossRefGoogle Scholar
  37. Wang A, Zeng X (2012) Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J Geophys Res 117, D05102Google Scholar
  38. Wang J, Rossow WB, Zhang Y (2000) Cloud vertical structure and its variations from a 20-year global rawinsonde dataset. J Clim 13:3041–3056. doi: 10.1175/1520-0442(2000)013<3041:CVSAIV>2.0.CO;2 CrossRefGoogle Scholar
  39. Weichert A, Brger G (1998) Linear versus nonlinear techniques in downscaling. Clim Res 10:83–93. doi: 10.3354/cr010083 CrossRefGoogle Scholar
  40. Weinzierl T, Conrad O, Böhner J, Wehberg J (2013) Regionalization of baseline climatologies and time series for the Okavango Catchment. Biodivers Ecol 5:235–245Google Scholar
  41. Yu H, Luedeling E, Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc Natl Acad Sci 107:22151–22156CrossRefGoogle Scholar
  42. Zängl G (2005) Dynamical aspects of wintertime cold-air pools in an alpine valley system. Mon Weather Rev 133:2721–2740. doi: 10.1175/MWR2996.1 CrossRefGoogle Scholar
  43. Zorita E, Von Storch H (1999) The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J Clim 12:2474–2489CrossRefGoogle Scholar
  44. Zorita E, Hughes JP, Lettemaier DP, Von Storch H (1995) Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation. J Clim 8:1023–1042. doi: 10.1175/1520-0442(1995)008<1023:SCORCP>2.0.CO;2 CrossRefGoogle Scholar
  45. Zou H, Zhou L, Ma S, et al. (2008) Local wind system in the Rongbuk Valley on the northern slope of Mt. Everest. Geophys Res Lett 35:L13813. doi:  10.1029/2008GL033466

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Institute of GeographyUniversity of HamburgHamburgGermany

Personalised recommendations