Theoretical and Applied Climatology

, Volume 122, Issue 1–2, pp 47–57 | Cite as

An evaluation of the seasonal added value of downscaling over the United States using new verification measures

  • Laurel L. De Haan
  • Masao Kanamitsu
  • Fernando De Sales
  • Liqiang Sun
Original Paper


Two separate dynamically downscaled ensembles are used to assess the added value of downscaling over the continental United States on a seasonal timescale. One data set is from a 55-year continuous run forced with observed sea surface temperatures. The other data set has downscaling results from seven regional models for 21 winters forced from a single coupled global model. The second data set, known as the Multi-RCM Ensemble Downscaling (MRED) project was used as a collection of individual models as well as a multi-model ensemble. The data was first tested for the potential loss of small-scale details due to averaging, and it was found that the number of small-scale details is not reduced when averaging over several models or several years. The added value of the downscaling was then calculated by standard measures, including climatology and correlation, as well as two newer measures: the added value index (AVI) and fraction skill score (FSS). The additional verification measures provided more information about the added value than was found with the standard measures. In general, more added value was found with the multi-model ensemble than with individual models. While it was clear that the added value was dependent on the forcing model, regional model, season, variable, and region, there were some areas where the downscale consistently added value, particularly near the coast and in topographically interesting areas.


Global Model Regional Model Temporal Correlation High Skill Climate Forecast System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arritt, RW (2010) Ensemble downscaling of winter seasonal forecasts: The MRED project, Abstract A23F-03 presented at 2010 Fall Meeting, AGU, San Francisco, CA, 13–17 DecGoogle Scholar
  2. Black TL (1994) The new NMC mesoscale Eta model: description and forecast examples. Weather Forecast 9:265–278. doi: 10.1175/1520-0434(1994)009<0265:TNNMEM>2.0.CO CrossRefGoogle Scholar
  3. Cotton WR, Pielke RA, Walko RL, Liston GE, Tremback CJ, Jiang H, McAnelly RL, Harrington JY, Nicholls ME, Carrio GG, McFadden JP (2003) RAMS 2001: current status and future directions. Meteor Atmos Phys 82:5–29. doi: 10.1007/s00703-001-0584-9 CrossRefGoogle Scholar
  4. De Sales F, Xue Y (2011) Assessing the dynamic-downscaling ability over South America using the intensity-scale verification technique. Int J Climatol 31:1205–1221. doi: 10.1002/joc.2139 CrossRefGoogle Scholar
  5. De Sales F, Xue Y (2013) Dynamic downscaling of 22-year CFS winter seasonal forecasts with the UCLA-ETA regional climate model over the United States. Clim Dyn 41:255–275. doi: 10.1007/s00382-012-1567-x CrossRefGoogle Scholar
  6. Di Luca A, de Elia R, Laprise R (2012) Potential for added value in precipitation simulated by high-resolution nested regional climate models and observations. Clim Dyn 38:1229–1247CrossRefGoogle Scholar
  7. Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M (2011) Regional climate models add value to global model data. BAMS 92:1181–1192. doi: 10.1175/2011BAMS3061.1 CrossRefGoogle Scholar
  8. Gilleland E, Ahijevych D, Brown BG, Casati B, Ebert EE (2009) Intercomparison of spatial forecast verification methods. Weather Forecast 24:1416–1430. doi: 10.1175/2009WAF2222260.1 CrossRefGoogle Scholar
  9. Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth-generation Penn System/NCAR mesoscale model (MM5). NCAR Tech Note NCAR/TN–398 + 1A, 107 ppGoogle Scholar
  10. Hong S-Y, Pan H-L (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Weather Rev 124:2322–2339. doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2 CrossRefGoogle Scholar
  11. Hong S-Y, Pan H-L (1998) Convective trigger function for a mass-flux cumulus parameterization scheme. Mon Weather Rev 126:2599–2620. doi: 10.1175/1520-0493(1998)126<2599:CTFFAM>2.0.CO;2 CrossRefGoogle Scholar
  12. Hou, Y., S. Moorthi,. K. Campana, 2002: Parameterization of solar radiation transfer in the NCEP models. NCEP Office Note, 441.
  13. Juang H-M, Hong S-Y, Kanamitsu M (1997) The NCEP regional spectral model: an update. BAMS 78:2125–2143. doi: 10.1175/1520-0477(1997)078<2125:TNRSMA>2.0.CO CrossRefGoogle Scholar
  14. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G et al (1996) The NCEP/NCAR 40-year reanalysis project. BAMS 77:437–470CrossRefGoogle Scholar
  15. Kanamaru H, Kanamitsu M (2007) Scale-selective bias correction in a downscaling of global analysis using a regional model. Mon Weather Rev 135:334–350. doi: 10.1175/MWR3294.1 CrossRefGoogle Scholar
  16. Kanamitsu M, De Haan L (2011) The added value index: a new metric to quantify the added value of regional models. J Geophys Res 116, D11106. doi: 10.1029/2011JD015597 CrossRefGoogle Scholar
  17. Kanamitsu M, Kumar A, Juang H-M, Schemm J-K, Wang W, Yang F, Hong S-Y, Peng P, Chen W, Moorthi S, Ji M (2002a) NCEP dynamical seasonal forecast system 2000. BAMS 83:1019–1037. doi: 10.1175/1520-0477(2002)083<1019:NDSFS>2.3.CO CrossRefGoogle Scholar
  18. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002b) NCEP-DOE AMIP-II reanalysis (R-2). BAMS 83:1631–1643. doi: 10.1175/BAMS-83-11-1631 CrossRefGoogle Scholar
  19. Leung LR, Kuo Y-H, Tribbia J (2006) Research needs and directions of regional climate modeling using WRF and CCSM. Bull Am Meteorol Soc 87(12):1747–1751. doi: 10.1175/BAMS-887-12-1747 CrossRefGoogle Scholar
  20. Liang X-Z, Xu M, Yuan X, Ling T, Choi HI, Zhang F, Chen L, Liu S, Su S, Qiao F, Wang JXL, Kunkel KE, Gao W, Joseph E, Morris V, Yu T-W, Dudhia J, Michalakes J (2012) Regional climate-weather research and forecasting model. BAMS 93:1363–1387CrossRefGoogle Scholar
  21. Lim Y-K, Stefanova L, Chan S, Schubert S, O’Brien J (2011) High-resolution subtropical summer precipitation derived from dynamical downscaling of a NCEP/DOE reanalysis: how much small-scale information is added by a regional model? Clim Dyn 37:1061–1080. doi: 10.1007/s00382-010-0891-2 CrossRefGoogle Scholar
  22. Messinger F, DiMego G, Kalnay E, Mitchell K, Shafran P, Ebisuzaki W, Jovic D, Woollen J, Rogers E, Berbery E, Ek M, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Mankin G, Parrish D, Shi W (2006) North American regional reanalysis. Bull Am Meteorol Soc 87:343–360CrossRefGoogle Scholar
  23. Pacanowski, R. C. and S. M. Griffies, 1998: MOM 3.0 Manual, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, USAGoogle Scholar
  24. Pielke, R. A., Sr., (2002) Mesoscale meteorological modeling. 2nd Ed. Academic Press, 676 ppGoogle Scholar
  25. Proemmel K, Geyer B, Jones JM, Widmann M (2010) Evaluation of the skill and added value of a reanalysis-driven regional simulation for alpine temperature. Int J Clim 30:760–773. doi: 10.1002/joc.1916 Google Scholar
  26. Roberts NM, Lean HW (2008) Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon Weather Rev 136:78–97. doi: 10.1175/2007MWR2123.1 CrossRefGoogle Scholar
  27. Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, Van Den Dool HM, Pan H-L, Moorthi S, Behringer D, Stokes D, Pena M, Lord S, White G, Ebisuzaki W, Peng P, Xie P (2006) The NCEP climate-forecasting system. J Clim 19:3483–3517. doi: 10.1175/JCLI3812.1 CrossRefGoogle Scholar
  28. Sun L, Moncunill DF, Li H, Moura AD, De Souza Filho F (2005) Climate downscaling over Nordeste, Brazil, using the NCEP RSM97. J Clim 18:551–567. doi: 10.1175/JCLI-3266.1 CrossRefGoogle Scholar
  29. Taylor KE (2001) Summarizing multiple aspects of model performance in single diagram. J Geophys Res 106(D7):7183–7192. doi: 10.1029/2000JD900719 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Laurel L. De Haan
    • 1
  • Masao Kanamitsu
    • 1
  • Fernando De Sales
    • 2
  • Liqiang Sun
    • 3
  1. 1.CASPO, Scripps Institution of OceanographyUniversity of CaliforniaSan Diego, La JollaUSA
  2. 2.Department of GeographyUniversity of CaliforniaLos AngelesUSA
  3. 3.Cooperative Institute for Climate and Satellites—North CarolinaAshevilleUSA

Personalised recommendations