Advertisement

Theoretical and Applied Climatology

, Volume 121, Issue 3–4, pp 499–515 | Cite as

The role of the export of tropical moisture into midlatitudes for extreme precipitation events in the Mediterranean region

  • Simon O. Krichak
  • Joseph Barkan
  • Joseph S. Breitgand
  • Silvio Gualdi
  • Steven B. Feldstein
Original Paper

Abstract

The aims of the study are twofold: firstly, to investigate the role of the export of humid tropical air in the formation of cool season heavy precipitating events (HPEs) in the Mediterranean region (MR); and secondly, to examine the possible linkage between the export of humid tropical air and the multiyear trend in extreme precipitation in the region. For this purpose, we analyze the spatial distributions of a number of key atmospheric variables with a reanalysis data for more than 50 intense HPEs for the MR. The results of this evaluation for both individual and composite events suggest that the HPEs are associated with atmospheric rivers (ARs). The MR HPEs are being characterized by the poleward export of humid air of tropical origin into the midlatitude MR from the Atlantic Ocean and Arabian Sea. These export events appear to be associated with the effects of hurricanes or intense cyclones in the North Atlantic. It was also found that the linear trend (for 1979–2013) of the frequency of humid days (days with precipitable water greater than 20 kg m−2) is consistent with recent changes in the character of precipitation over the MR and southern Europe.

Keywords

Mediterranean Region Extreme Precipitation Precipitable Water Convective Available Potential Energy Eastern Mediterranean Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The financial support for this work has been provided by The United States-Israel Binational Science Foundation (BSF) under research grant no. 2008436, the United States National Science Foundation (NSF) under grants AGS-1036858 and AGS-1401220, Research Grant 4500568707 for 2011–2013 by the Israeli Water Authority of the Ministry of Infrastructures, and the European Union Sixth Framework programme project Climate Change and Impact Research: Mediterranean Environment (CIRCE) [www.circeproject.eu] under contract GOCE-036961. This work is also a contribution to the Hydrological Cycle in Mediterranean Experiment (HyMex) and The Northern Eurasian Earth Science Partnership Initiative (NEESPI). One of the authors (SG) thanks the projects GEMINA and NextData funded by the Italian Ministries of University and Research (MIUR) and of Environment (MATT). Discussions supported through the European Cooperation in Science and Technology (COST) Earth System Science and Environmental Management (ESSEM) Action ES0905 “Basic concepts for convection parameterization in weather forecast and climate models” and the WMO MEDEX and European Science Foundation MedClivar programs are also acknowledged. Additionally, the authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov) used in this publication. Finally, we acknowledge the use of the NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA from their website at http://www.esrl.noaa.gov/psd/; of the data from the 20th Century Reanalysis from the website http://www.esrl.noaa.gov/psd/data/20thC_Rean/; as well as the use of the maps of indices of precipitation extremes and their multiyear trends during the twentieth century over the European region available at the website (http://eca.knmi.nl/) of the European Climate Assessment & Dataset project (ECA). The authors thank two anonymous reviewers for their insightful comments.

References

  1. Alpert P, Tsidulko M, Krichak SO, Stein U (1996) A multi-stage evolution of an ALPEX cyclone. Tellus 1996(48A):209–220CrossRefGoogle Scholar
  2. Alpert P, Osetinsky I, Ziv B, Shafir H (2004) Semi-objective classification for daily synoptic systems: application to the eastern Mediterranean climate change. Int J Climatol 24:1001–1011CrossRefGoogle Scholar
  3. Avila LA (2001) Hurricane Olga, 24 November–4 December 2001. Tropical cyclone report. [Available online at http://www.nhc.noaa.gov/2001olga.html]
  4. Bancroft GP (2003) Marine weather review—North Atlantic Area September 2002 to February 2003, Mariners Wea. Log, NOAA, 47, 1, 8 ppGoogle Scholar
  5. Barnes EA (2013) Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys Res Lett 40:4734–4739. doi: 10.1002/grl.50880 CrossRefGoogle Scholar
  6. Buzzi A, Tertaglione N, Malguzzi P (1998) Numerical simulations of the 1994 Piedmont flood: role of orography and moist processes. Mon Weather Rev 126:2369–2383CrossRefGoogle Scholar
  7. Buzzi A, Davolio S, Malguzzi P, Drofa O, Mastrangelo D (2013) Heavy rainfall episodes over Liguria of autumn 2011: numerical forecasting experiments. Nat Hazards Earth Syst Sci 1:7093–7135CrossRefGoogle Scholar
  8. Carlson TN (1980) Airflow through midlatitude cyclones and the comma cloud patterns. Mon Weather Rev 108(10):1498–1509CrossRefGoogle Scholar
  9. Case RA, Gerrosh HP (1988) Annual summary. Atlantic hurricane season of 1987. Mon Weather Rev 116:939–949CrossRefGoogle Scholar
  10. Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  11. de Vries AJ, Tyrlis E, Edry D, Krichak SO, Steil B, Lelieveld J (2013) Extreme precipitation events in the Middle East: dynamics of the Active Red Sea Trough. J Geophys Res Atmos 118:7087–7108. doi: 10.1002/jgrd.50569 CrossRefGoogle Scholar
  12. De Zolt S, Lionello P, Nuhu A, Tomasin A (2006) The disastrous storm of 4 November 1966 on Italy. Nat Hazards Earth Syst Sci 6:861–879CrossRefGoogle Scholar
  13. Doswell CA, Ramis C, Romero R, Alonso S (1998) A diagnostic study of three heavy precipitation episodes in the western Mediterranean region. Weather Forecast 13:102–124CrossRefGoogle Scholar
  14. Draxler RR, Rolph GD (2013) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY Website (http://www.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, College Park, MD
  15. Ducrocq V, Braud I, Davolio S et al (2013) HyMeX-SOP1, the field campaign dedicated to heavy precipitation and flash flooding in the northwestern Mediterranean. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-12-00244.1 Google Scholar
  16. Frei C, Davies HC, Gurtz J, Schär C (2000) Climate dynamics and extreme precipitation and flood events in Central Europe. Integr Assess 1:281–299CrossRefGoogle Scholar
  17. Gualdi S, Somot S, May W, Castellari S, Déqué M, Adani M, Artale V, Bellucci A, Breitgand JS, Carillo A, Cornes R, Dell’Aquila A, Dubois C, Efthymiadis D, Elizalde A, Gimeno L, Goodess CM, Harzallah A, Krichak SO, Kuglitsch FG, Leckebusch GC, L’Heveder B, Li L, Lionello P, Luterbacher J, Mariotti A, Nieto R, Nissen KM, Oddo P, Ruti P, Sanna A, Sannino G, Scoccimarro E, Sevault F, Struglia MV, Toreti A, Ulbrich U, Xoplaki E (2013) Future climate projections. In: Navarra A, Tubiana L (eds) Regional assessment of climate change in the Mediterranean. Springer, Dordrecht, 870 pGoogle Scholar
  18. Homar V, Jansa A, Campins J, Genoves A, Ramis C (2007) Towards a systematic climatology of sensitivities of Mediterranean high impact weather: a contribution based on intense cyclones. Nat Hazards Earth Syst Sci 7:445–454CrossRefGoogle Scholar
  19. Jansa A, Genoves A, Garsia-Moya JA (2000) Western Mediterranean cyclones and heavy rain. Part 1: numerical experiment concerning the Piedmont flood case. Meteorol Appl 7:323–333CrossRefGoogle Scholar
  20. Jansa A, Alpert P, Arbogast P, Buzzi A, Ivancan-Picek B, Kotroni V, Llasat MC, Ramis C, Richard E, Romero R, Speranza A (2014) MEDEX: a general overview. Nat Hazards Earth Syst Sci Discuss 2:535–580. doi: 10.5194/nhessd-2-535-2014 CrossRefGoogle Scholar
  21. Kahana R, Ziv B, Enzel Y, Dayan U (2002) Synoptic climatology of major floods in the Negev desert, Israel. Int J Climatol 22:867–882CrossRefGoogle Scholar
  22. Kahana R, Ziv B, Dayan U, Enzel Y (2004) Atmospheric predictors for major floods in the Negev desert, Israel. Int J Climatol 24:1137–1147CrossRefGoogle Scholar
  23. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  24. Klein Tank AMG, Koennen GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Climatol 16:3665–3680. doi: 10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2 CrossRefGoogle Scholar
  25. Klok EJ, Klein Tank AMG (2009) Undated and extended European data set of daily climate observations. Int J Climatol 29:1182–1191. doi: 10.1002/joc.1779 CrossRefGoogle Scholar
  26. Kotroni V, Lagouvardos K, Defer E, Dietrich S, Porcu F, Medaglia CM, Demitras M (2006) The Antalya 5 December 2002 storm: observations and model analysis. J Appl Meteorol Climatol 45:576–590CrossRefGoogle Scholar
  27. Krichak SO, Alpert P (1998) Role of large scale moist dynamics in November 1–5, 1994 hazardous Mediterranean weather. J Geophys Res 103:19,453–19,468CrossRefGoogle Scholar
  28. Krichak SO, Alpert P, Dayan M (2004) Role of atmospheric processes associated with hurricane Olga in December 2001 flash floods in Israel. J Hydrometeorol 5(6):1259–1270CrossRefGoogle Scholar
  29. Krichak SO, Alpert P, Dayan M (2006) An evaluation of the role of hurricane Olga (2001) in an extreme rainy event in Israel using dynamic tropopause maps. Meteorol Atmos Phys. doi: 10.1007/s00703-006-0230-7 Google Scholar
  30. Krichak SO, Breitgand JS, Feldstein SB (2012) A conceptual model for identification of the Active Red Sea Trough synoptic events over southeastern Mediterranean. J Appl Meteorol Climatol 5:962–971. doi: 10.1175/JAMC-D-11-0223.1 CrossRefGoogle Scholar
  31. Krichak SO, Breitgand JS, Gualdi S, Feldstein SB (2013) Teleconnection-extreme precipitation relationships over the Mediterranean region. Theor Appl Climatol. doi: 10.1007/s00704-013-1036-4 Google Scholar
  32. Lavers DA, Allan RP, Wood EF, Villarini G, Brayshaw DJ, Wade AJ (2011) Winter floods in Britain are connected to atmospheric rivers. Geophys Res Lett 38, L23803. doi: 10.1029/2011GL049783 Google Scholar
  33. Lionello P, Bhend J, Buzzi A, Della-Marta PM, Krichak SO, Jansa A, Maheras P, Sanna A, Trigo IF, Trigo R (2006) Cyclones in the Mediterranean region: climatology and effects on the environment. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability, 4. Elsevier, Amsterdam, pp 325–372Google Scholar
  34. Liu J, Curry JA, Wang H, Song M, Horton RM (2012) Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci U S A 109:4074–4079. doi: 10.1073/pnas.1114910109 CrossRefGoogle Scholar
  35. Malguzzi P, Grossi G, Buzzi A, Ranzi R, Buizza R (2006) The 1966 ‘century’ flood in Italy: a meteorological-hydrological re-visitation. J Geophys Res Atmos 111:D24106, ISSN: 0148–0227CrossRefGoogle Scholar
  36. Massacand AC, Wernli H, Davies HC (1998) Heavy precipitation on the Alpine southside: an upper-level precursor, Geophys. Res Lett 25(9):1435–1438CrossRefGoogle Scholar
  37. Pinto JG, Klawa M, Ulbrich U, Rudari R, Speth P (2001) Extreme precipitation events over southwestern Italy and their relationship with tropical–extratropical interactions over the Atlantic Mediterranean storms. Proc. Third Plinius Conf., Baja Sardinia, Italy, European Geophysical Society, GNDCI Publication 2560:327–332Google Scholar
  38. Pinto JG, Ulbrich S, Parodi A, Rudari R, Boni G, Ulbrich U (2014) Identification and ranking of extraordinary rainfall events over Northwest Italy: the role of Atlantic moisture. J Geophys Research - Atmospheres 118:2085–2097. doi: 10.1002/jgrd.50179 CrossRefGoogle Scholar
  39. Ralph FM, Dettinger MD (2011) Storms, floods, and the science of atmospheric rivers, EOS, Transactions. Am Geophys Union 92(32):265–272CrossRefGoogle Scholar
  40. Ralph FM, Neiman PJ, Wick GA (2004) Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon Weather Rev 132:1721–1745. doi: 10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2 CrossRefGoogle Scholar
  41. Ramis C, Llasat MC (1994) The October-1987 floods in Catalonia: synoptic and mesoscale mechanisms. Meteorol Appl 1:337–350CrossRefGoogle Scholar
  42. Ramis C, Jansá A, Alonso S, Heredia MA (1986) Convection over the western Mediterranean. Synoptic study and remote observation (in Spanish). Rev Meteorol 7:59–82Google Scholar
  43. Ramis C, Romero R, Homar V, Alonso S, Alarcón M (1998) Diagnosis and numerical simulation of a torrential precipitation event in Catalonia (Spain). Meteorol Atmos Phys Meteorol Atmos Phys 69:1–21CrossRefGoogle Scholar
  44. Ramis C, Romero R, Homar V (2009) The severe thunderstorm of 4 October 2007 in Mallorca: an observational study. Nat Hazards Earth Syst Sci 9:1237–1245. doi: 10.5194/nhess-9-1237-2009 CrossRefGoogle Scholar
  45. Reale M, Lionello P (2013) Synoptic climatology of winter intense precipitation events along the Mediterranean coasts. Nat Hazards Earth Syst Sci 13:1707–1722. doi: 10.5194/nhess-13-1707-2013 CrossRefGoogle Scholar
  46. Rebora N, Molini L, Casella E, Comellas A, Fiori E, Pignone F, Siccardi F, Silvestro F, Tanelli S, Parodi A (2013) Extreme rainfall in the Mediterranean: what can we learn from observations? J Hydrometeorol 14:906–922CrossRefGoogle Scholar
  47. Ricard D, Ducrocq V, Auger L (2012) A climatology of the mesoscale environment associated with heavily precipitating events over a northwestern Mediterranean area. J Appl Meteorol Climatol 51(3):468–488. doi: 10.1175/JAMC-D-11-017.1 CrossRefGoogle Scholar
  48. Romero R, Ramis C, Alonso S, Doswell CA, Stensrud DJ (1998) Mesoscale model simulations of three heavy precipitation events in the western Mediterranean region. Mon Weather Rev 1998(126):1859–1881CrossRefGoogle Scholar
  49. Romero R, Sumner G, Ramis C, Genove A (1999) A classification of the atmospheric circulation patterns producing significant daily rainfall in the Spanish Mediterranean area. Int J Climatol 19:765–785CrossRefGoogle Scholar
  50. Romero R, Doswell CA, Ramis C (2000) Mesoscale numerical study of two cases of long-lived quasi-stationary convective systems over eastern Spain. Mon Weather Rev 128:3731–3751CrossRefGoogle Scholar
  51. Rubin S, Ziv B, Paldor N (2007) Tropical plumes over eastern North Africa as a source of rain in the Middle East. Mon Weather Rev 35(12):4135–4148CrossRefGoogle Scholar
  52. Sagg AL (1967) The hurricane season of 1966. Mon Weather Rev 95(3):131–142CrossRefGoogle Scholar
  53. Scoccimarro S, Gualdi S, Navarra A (2012) Tropical cyclone effects on Arctic Sea ice variability. Geophys Res Lett 39, L17704. doi: 10.1029/2012GL052987 Google Scholar
  54. Tsvieli Y, Zangvil A (2005) Synoptic climatological analysis of wet and dry Red Sea troughs over Israel. Int J Climatol 25:1997–2015CrossRefGoogle Scholar
  55. Turato B, Reale O, Siccardi F (2004) Water vapor sources of the October 2000 Piedmont flood. J Hydrometeorol 5:693–712CrossRefGoogle Scholar
  56. van Zomeren J, van Delden A (2007) Vertically integrated moisture flux convergence as a predictor of thunderstorms. Atmosph Res 83:435–445CrossRefGoogle Scholar
  57. Winschall A, Pfahl S, Sodemann H, Wernli H (2012) Impact of North Atlantic evaporation hot spots on southern Alpine heavy precipitation events. Q J R Meteorol Soc 138:1245–1258CrossRefGoogle Scholar
  58. Winschall A, Sodemann H, Pfahl S, Wernli H (2014) How important is intensified evaporation for Mediterranean precipitation extremes? J Geophys Res Atmos. doi: 10.1002/2013JD021175 Google Scholar
  59. Zhang X, He J, Zhang J, Polyakov I, Gerdes R, Inoue J, Wu P (2013) Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat Clim Chang 3, doi: 10.1038/NCIMATE1631
  60. Zhu Y, Newell RE (1998) A proposed algorithm for moisture fluxes from atmospheric rivers. Mon Weather Rev 126(3):725–735. doi: 10.1175/ 1520-0493(1998)126<0725:APAFMF>2.0.CO;2 CrossRefGoogle Scholar
  61. Zolina O, Simmens C, Kapala A, Bachner S, Gulev S, Maechel H (2008) Seasonality of precipitation extremes over Germany since 1950 from a very dense observation network. J Geophys Res 113, D06110. doi: 10.1029/2007JD008393 Google Scholar
  62. Zolina O, Simmer C, Belyaev K, Kapala A, Gulev SK (2009) Improving estimates of heavy and extreme precipitation using daily records from European rain gauges. J Hydrometeorol 10:701–716. doi: 10.1175/2008JHM1055.1 CrossRefGoogle Scholar
  63. Zolina O, Simmer C, Gulev SK, Kollet S (2010) Changing structure of European precipitation: longer wet periods leading to more abundant rainfalls. Geophys Res Lett 37, L06704. doi: 10.1029/2010GL042468 Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Simon O. Krichak
    • 1
  • Joseph Barkan
    • 1
  • Joseph S. Breitgand
    • 1
  • Silvio Gualdi
    • 2
  • Steven B. Feldstein
    • 3
  1. 1.Department of Geophysics and Planetary Sciences, Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Istituto Nazionale di Geofisica e Vulcanologia (INGV)Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC)BolognaItaly
  3. 3.Department of MeteorologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations