Theoretical and Applied Climatology

, Volume 119, Issue 3–4, pp 465–479 | Cite as

Estimating probability distributions of solar irradiance

  • A. Voskrebenzev
  • S. Riechelmann
  • A. Bais
  • H. Slaper
  • G. Seckmeyer
Original Paper

Abstract

In the presence of clouds the ability to calculate instantaneous spectral irradiance values is limited by the ability to acquire appropriate input parameters for radiative transfer solvers. However, the knowledge of the statistical characteristics of spectral irradiance as a function of season and time of the day is relevant for solar energy and health applications. For this purpose a method to derive the wavelength dependent probability density functions (PDFs) and its seasonal site variability is presented. In contrast to the UVB range, the derived PDFS at three stations in Europe (Bilthoven, Garmisch-Partenkirchen and Thessaloniki) show only minor wavelength dependence above 315 nm. But there are major differences of the PDFs that are attributed to the site specific cloud climatology at these stations. Furthermore the results suggest that the previously described relationship between air mass and bimodality is the consequence of seasonal cloud variations. For Thessaloniki it is shown that the pyranometer sample spread around the cloudless value is proportional to the secant of the solar zenith angle and therefore scales according to air mass. Cloud amount observations are utilized to associate the local maxima of the multimodal PDFs with rough cloudiness states confirming the already established interpretation of broadband data for spectral data as well. As one application example the likelihood of irradiance enhancements over the clear sky case due to clouds is assessed.

Keywords

Spectral solar irradiance Solar energy Cloud Probability Modification factor Kernel density estimation 

Notes

Acknowledgments

We appreciate the helpful suggestions and data regarding the aerosol parametrization contributed by Bernhard Mayer (Munich, Germany). Further we would like to thank Greg Bodeker of Bodeker Scientific for providing the combined total column ozone database.

References

  1. Anton M, Lopez M, Serrano A, Banon M, Garcia JA (2010) Diurnal variability of total ozone column over madrid (Spain). Atmos Environ 44(24):2793–2798CrossRefGoogle Scholar
  2. Bais A (1997) Absolute spectral measurements of direct solar ultraviolet irradiance with a brewer spectrophotometer. Appl Opt 36(21):5199–5204CrossRefGoogle Scholar
  3. Balis D, Papayannis A, Galani E, Marenco F, Santacesaria V, Hamonou E, Chazette P, Ziomas I, Zerefos C (2000) Tropospheric LIDAR aerosol measurements and sun photometric observations at Thessaloniki, Greece. Atmos Environ 34(6):925–932CrossRefGoogle Scholar
  4. Ballare CL, Caldwell MM, Flint SD, Robinson SA, Bornman JF (2011) Effects of solar ultraviolet radiation on terrestrial ecosystems. patterns, mechanisms, and interactions with climate change. Photochem Photobiol Sci 10: 226–241. doi: 10.1039/C0PP90035D CrossRefGoogle Scholar
  5. Bodeker GE, Shiona H, Eskes H (2005) Indicators of Antarctic ozone depletion. Atmos Chem Phys 5(10):2603–2615CrossRefGoogle Scholar
  6. Bowman AW (1984) An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71(2):353–360CrossRefGoogle Scholar
  7. den Outer PN, Slaper H, Tax RB (2005) Uv radiation in the netherlands: Assessing long-term variability and trends in relation to ozone and clouds. J Geophys ResGoogle Scholar
  8. Edoff M (2012) Thin film solar cells: Research in an industrial perspective. Ambio 41:112–118. http://search.proquest.com/docview/963513855?accountid=14486 CrossRefGoogle Scholar
  9. Foyo-Moreno I, Alados I, Olmo FJ, Alados-Arboledas L (2003) The influence of cloudiness on uv global irradiance (295–385 nm). Agric For Meteorol 120(1-4):101–111CrossRefGoogle Scholar
  10. Gansler RA, Klein SA, Beckman WA (1995) Investigation of minute solar radiation data. Sol Energy 55(1):21–27CrossRefGoogle Scholar
  11. Gerasopoulos E, Andreae MO, Zerefos CS, Andreae TW, Balis D, Formenti P, Merlet P, Amiridis V, Papastefanou C (2003) Climatological aspects of aerosol optical properties in northern Greece. Atmos Chem Phys 3(6):2025–2041CrossRefGoogle Scholar
  12. Gröbner J, Blumthaler M, Kazadzis S, Bais A, Webb A, Schreder J, Seckmeyer G, Rembges D (2006) Quality assurance of spectral solar uv measurements: results from 25 uv monitoring sites in europe, 2002 to 2004. Metrologia 43(2):66–71CrossRefGoogle Scholar
  13. Jurado M, Caridad JM, Ruiz V (1995) Statistical distribution of the clearness index with radiation data integrated over five minute intervals. Sol Energy 55(6):469–473CrossRefGoogle Scholar
  14. Kazadzis S, Bais A, Amiridis V, Balis D, Meleti C, Kouremeti N, Zerefos CS, Rapsomanikis S, Petrakakis M, Kelesis A, Tzoumaka P, Kelektsoglou K (2007) Nine years of uv aerosol optical depth measurements at thessaloniki, greece. Atmos Chem Phys 7(1):537–567CrossRefGoogle Scholar
  15. Lindfors A, Arola A (2008) On the wavelength-dependent attenuation of uv radiation by clouds. Geophys Res LettGoogle Scholar
  16. Loader CR (1999) Bandwidth selection: Classical or plug-in?. Annals Math Stat 27(2):415–438CrossRefGoogle Scholar
  17. Lovengreen C, Fuenzalida H, Videla L (2005) On the spectral dependency of uv radiation enhancements due to clouds in valdivia, chile (39.8s). J Geophys Res 110 (D14). doi: 10.1029/2004JD005372
  18. Lucas RM, McMichael AJ, Armstrong BK, Smith WT (2008) Estimating the global disease burden due to ultraviolet radiation exposure. Int J Epidemiol 37(3):654–667CrossRefGoogle Scholar
  19. Mayer B, Kylling A (2005) Technical note: The libradtran software package for radiative transfer calculations - description and examples of use. Atmos Chem Phys 5(7):1855–1877CrossRefGoogle Scholar
  20. Mayer B, Seckmeyer G, Kylling A (1997) Systematic long-term comparison of spectral uv measurements and uvspec modeling results. J Geophys Res 102:8755–8767CrossRefGoogle Scholar
  21. Norval M, Lucas RM, Cullen AP, de Gruijl FR, Longstreth J, Takizawa Y, van der Leun JC (2011) The human health effects of ozone depletion and interactions with climate change. Photochem Photobiol Sci 10: 199–225. doi: 10.1039/C0PP90044C CrossRefGoogle Scholar
  22. Oppenrieder A, Höppe P, Koepke P, Reuder J (2005) Long term measurements of the uv irradiance of inclined surfaces and visualization of uv exposure of the human body. Meteorol Z 14(2):285–290CrossRefGoogle Scholar
  23. Parzen E (1962) On the estimation of a probability density function and mode. Annals Math Stat 33:1065–1076CrossRefGoogle Scholar
  24. Pierluissi JH, Jarem JM, Peng GS (1985) Proposed molecular transmission band models for lowtran Infrared technology x, pp 164–170. http://search.proquest.com/docview/24728830?accountid=14486
  25. Ricchiazzi P, Yang S, Gautier C, Sowle D (1998) Sbdart: A research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere. B Am Meteorol Soc 79 (10): 2101–2114. http://search.proquest.com/docview/232633964?accountid=14486 CrossRefGoogle Scholar
  26. Rudemo M (1982) Empirical choice of histograms and kernel density estimators. Scand J Stat 9(2):65–78Google Scholar
  27. Savchuk OY, Hart JD, Sheather SJ (2010) Indirect cross-validation for density estimation. J Am Stat Assoc 105(489):415–423CrossRefGoogle Scholar
  28. Scott DW (1979) On optimal and data-based histograms. Biometrika 66(3):605–610CrossRefGoogle Scholar
  29. Seckmeyer G (1989) Spectral measurements of the variability of global uv-radiation. Meteorologische Rundschau 41(6):180–183Google Scholar
  30. Seckmeyer G, Bernhard G, Mayer B, Erb R (1995) High-accuracy spectroradiometry of solar ultraviolet radiation. Metrologia 32(6):697–700CrossRefGoogle Scholar
  31. Seckmeyer G, Erb R, Albold A (1996) Transmittance of a cloud is wavelength-dependent in the uv-range. Geophys Res Lett 23(20):2753–2755CrossRefGoogle Scholar
  32. Seckmeyer G, Mayer B, Bernhard G, Erb R, Albold A, Jäger H., Stockwell W.R. (1997) New maximum uv irradiance levels observed in central europe. Atmos Environ 31(18):2971–2976CrossRefGoogle Scholar
  33. Seckmeyer G, Glandorf M, Wichers C, McKenzie R, Henriques D, Carvalho F, Webb A, Siani A, Bais A, Kjeldstad B, Brogniez C, Werle P, Koskela T, Lakkala K, Grobner J, Slaper H, denOuter P, Feister U (2008) Europe’s darker atmosphere in the uv-b. Photochem Photobiol Sci 7:925–930CrossRefGoogle Scholar
  34. Seckmeyer G, Pissulla D, Glandorf M, Henriques D, Johnsen B, Webb A, Siani AM, Bais A, Kjeldstad B, Brogniez C et al (2008) Variability of uv irradiance in europe. Photochem Photobiol 84(1):172–179Google Scholar
  35. Seckmeyer G, Schrempf M, Wieczorek A, Riechelmann S, Graw K, Seckmeyer S, Zankl M (2013) A novel method to calculate solar uv exposure relevant to vitamin d production in humans. Photochem Photobiol. doi: 10.1111/php.12074
  36. Sheather SJ (2004) Density estimation. Stat Sci 19(4):588–597CrossRefGoogle Scholar
  37. Shettle E. (ed.) (1989) Models of aerosols, clouds, and precipitation for atmospheric propagation studiesGoogle Scholar
  38. Slaper H, Reinen HAJM, Blumthaler M, Huber M, Kuik F (1995) Comparing ground-level spectrally resolved solar uv measurements using various instruments: A technique resolving effects of wavelength shift and slit width. Geophys Res Lett 22(20):2721–2724CrossRefGoogle Scholar
  39. Storch H (2002) Statistical analysis in climate research. Cambridge University Press, CambridgeGoogle Scholar
  40. Suehrcke H, McCormick PG (1988) The frequency distribution of instantaneous insolation values. Sol Energy 40(5):413–422. http://www.bibsonomy.org/bibtex/2b5699bc1a38c996292348f54b386dfb4/procomun CrossRefGoogle Scholar
  41. Terrell GR (1990) The maximal smoothing principle in density estimation. J Am Stat Assoc 85(410):470–477CrossRefGoogle Scholar
  42. Tovar J, Olmo FJ, Alados-Arboledas L (1998) One-minute global irradiance probability density distributions conditioned to the optical air mass. Sol Energy 62(6):387–393CrossRefGoogle Scholar
  43. Turlach BA (1993) Bandwidth selection in kernel density estimation: A review Core and institut de statistique, pp 23–493Google Scholar
  44. Varo M, Pedrós G, Martnez-Jimenez P (2005) Modelling of broad band ultraviolet clearness index distributions for cordoba, spain. Agric For Meteorol 135(1–4):346–351CrossRefGoogle Scholar
  45. Varo M, Pedros G, Martinez-Jimenez P, Aguilera M J (2006) Global solar irradiance in cordoba: Clearness index distributions conditioned to the optical air mass. Renew Energy 31(9):1321–1332CrossRefGoogle Scholar
  46. Vernez D, Milon A, Francioli L, Bulliard JL, Vuilleumier L, Moccozet L (2011) A numeric model to simulate solar individual ultraviolet exposure. Photochem Photobiol 87(3):721–728CrossRefGoogle Scholar
  47. Vernez D, Milon A, Vuilleumier L, Bulliard JL (2012) Anatomical exposure patterns of skin to sunlight: relative contributions of direct, diffuse and reflected ultraviolet radiation. Br J Dermatol 167(2):383–390CrossRefGoogle Scholar
  48. Wilks DS (2005) Statistical methods in the atmospheric sciences. Elsevier Science, CaliforniaGoogle Scholar
  49. Zhu J, Hsu CM, Yu Z, Fan S, Cui Y (2010) Nanodome solar cells with efficient light management and self-cleaning. Nano Lett 10(6):1979–1984. doi: 10.1021/nl9034237 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • A. Voskrebenzev
    • 1
  • S. Riechelmann
    • 1
  • A. Bais
    • 2
  • H. Slaper
    • 3
  • G. Seckmeyer
    • 1
  1. 1.Institute of Meteorology and ClimatologyUniversity of HannoverHannoverGermany
  2. 2.Laboratory of Atmospheric PhysicsAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Laboratory for Radiation ResearchNational Institute of Public Health and the EnvironmentBilthovenNetherlands

Personalised recommendations