Theoretical and Applied Climatology

, Volume 119, Issue 3–4, pp 493–514 | Cite as

Urban surface temperature behaviour and heat island effect in a tropical planned city

  • Adeb Qaid AhmedEmail author
  • Dilshan Remaz Ossen
  • Elmira Jamei
  • Norhashima Abd Manaf
  • Ismail Said
  • Mohd Hamdan Ahmad
Original Paper


Putrajaya is a model city planned with concepts of a “city in the garden” and an “intelligent city” in the tropics. This study presents the behaviour of the surface temperature and the heat island effect of Putrajaya. Findings show that heat island intensity is 2 °C on average at nighttime and negligible at daytime. But high surface temperature values were recorded at the main boulevard due to direct solar radiation incident, street orientation in the direction of northeast and southwest and low building height-to-street width ratio. Buildings facing each other had cooling effect on surfaces during the morning and evening hours; conversely, they had a warming effect at noon. Clustered trees along the street are effective in reducing the surface temperature compared to scattered and isolated trees. Surface temperature of built up areas was highest at noon, while walls and sidewalks facing northwest were hottest later in the day. Walls and sidewalks that face northwest were warmer than those that face southeast. The surface temperatures of the horizontal street surfaces and of vertical façades are at acceptable levels relative to the surface temperature of similar surfaces in mature cities in subtropical, temperate and Mediterranean climates.


Surface Temperature Solar Radiation Urban Heat Island Street Canyon High Surface Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Institute Sultan Iskandar (ISI) and the staff for funding this project and for their valuable and support rendered throughout the research progress. The authors wish to acknowledge the Perbadanan Putrajaya for giving the permission to collect the data. Many thanks also go to Tariq Gaber for helping us in collecting data.


  1. Adebayo YR (1991) “Heat island” in a humid tropical city and its relationship with potential evaporation. Theor Appl Climatol 43(3):137–147. doi: 10.1007/bf00867471 CrossRefGoogle Scholar
  2. Akbari H, Pomerantz M, Taha H (2001) Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energy 70(3):295–310CrossRefGoogle Scholar
  3. Ali-Toudert F, Mayer H (2006) Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build Environ 41(2):94–108. doi: 10.1016/j.buildenv.2005.01.013 CrossRefGoogle Scholar
  4. Ali-Toudert F, Mayer H (2007) Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Sol Energy 81(6):742–754. doi: 10.1016/j.solener.2006.10.007 CrossRefGoogle Scholar
  5. Ali-Toudert F, Djenane M, Bensalem R, Mayer H (2005) Outdoor thermal comfort in the old desert city of Beni-Isguen, Algeria. Clim Res 28(3):243–256. doi: 10.3354/cr028243 CrossRefGoogle Scholar
  6. Andreou E, Axarli K (2012) Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis. Renew Energy 43:354–363. doi: 10.1016/j.renene.2011.11.038 CrossRefGoogle Scholar
  7. Armson D, Stringer P, Ennos AR (2012) The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For Urban Green 11(3):245–255. doi: 10.1016/j.ufug.2012.05.002 CrossRefGoogle Scholar
  8. Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23(1):1–26. doi: 10.1002/joc.859 CrossRefGoogle Scholar
  9. Bourbia F, Awbi HB (2004a) Building cluster and shading in urban canyon for hot dry climate: part 1: air and surface temperature measurements. Renew Energy 29(2):249–262. doi: 10.1016/S0960-1481(03)00170-8 CrossRefGoogle Scholar
  10. Bourbia F, Awbi HB (2004b) Building cluster and shading in urban canyon for hot dry climate: part 2: shading simulations. Renew Energy 29(2):291–301. doi: 10.1016/S0960-1481(03)00171-X CrossRefGoogle Scholar
  11. Bourbia F, Boucheriba F (2010) Impact of street design on urban microclimate for semi arid climate (Constantine). Renew Energy 35(2):343–347. doi: 10.1016/j.renene.2009.07.017 CrossRefGoogle Scholar
  12. Chudnovsky A, Ben-Dor E, Saaroni H (2004) Diurnal thermal behavior of selected urban objects using remote sensing measurements. Energy Build 36(11):1063–1074. doi: 10.1016/j.enbuild.2004.01.052 CrossRefGoogle Scholar
  13. Emmanuel R, Fernando HJS (2007) Urban heat islands in humid and arid climates: role of urban form and thermal properties in Colombo, Sri Lanka and Phoenix, USA. Climate Research 34(3):241–251. doi: 10.3354/cr00694 CrossRefGoogle Scholar
  14. Giannaros TM, Melas D (2012) Study of the urban heat island in a coastal Mediterranean City: the case study of Thessaloniki, Greece. Atmos Res 118:103–120. doi: 10.1016/j.atmosres.2012.06.006 CrossRefGoogle Scholar
  15. Giannopoulou K, Santamouris M, Livada I, Georgakis C, Caouris Y (2010) The impact of canyon geometry on intra urban and urban: suburban night temperature differences under warm weather conditions. Pure Appl Geophys 167(11):1433–1449. doi: 10.1007/s00024-010-0099-8 CrossRefGoogle Scholar
  16. Haider T, David JS, Hashem A (1992) High-albedo materials for reducing building cooling energy useGoogle Scholar
  17. Johansson E (2006) Influence of urban geometry on outdoor thermal comfort in a hot dry climate: a study in Fez, Morocco. Build Environ 41(10):1326–1338. doi: 10.1016/j.buildenv.2005.05.022 CrossRefGoogle Scholar
  18. Kantzioura A, Kosmopoulos P, Zoras S (2012) Urban surface temperature and microclimate measurements in Thessaloniki. Energy Build 44:63–72CrossRefGoogle Scholar
  19. Krüger EL, Minella FO, Rasia F (2011) Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Build Environ 46(3):621–634. doi: 10.1016/j.buildenv.2010.09.006 CrossRefGoogle Scholar
  20. Lazzarini M, Marpu PR, Ghedira H (2013) Temperature-land cover interactions: the inversion of urban heat island phenomenon in desert city areas. Remote Sens Environ 130:136–152. doi: 10.1016/j.rse.2012.11.007 CrossRefGoogle Scholar
  21. Makaremi N, Salleh E, Jaafar MZ, GhaffarianHoseini A (2012) Thermal comfort conditions of shaded outdoor spaces in hot and humid climate of Malaysia. Build Environ 48:7–14. doi: 10.1016/j.buildenv.2011.07.024 CrossRefGoogle Scholar
  22. Masmoudi S, Mazouz S (2004) Relation of geometry, vegetation and thermal comfort around buildings in urban settings, the case of hot arid regions. Energy Build 36(7):710–719. doi: 10.1016/j.enbuild.2004.01.043 CrossRefGoogle Scholar
  23. Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51(4):323–334. doi: 10.1007/s00484-006-0061-8 CrossRefGoogle Scholar
  24. Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54(2):131–139. doi: 10.1007/s00484-009-0261-0 CrossRefGoogle Scholar
  25. McPherson EG, Nowak DJ, Rowntree RA, Station NFE (1994) Chicago’s urban forest ecosystem: results of the Chicago Urban Forest Climate Project. U.S. Dept. of Agriculture, Forest Service, Northeastern Forest Experiment StationGoogle Scholar
  26. Menberg K, Bayer P, Zosseder K, Rumohr S, Blum P (2013) Subsurface urban heat islands in German cities. Sci Total Environ 442:123–133. doi: 10.1016/j.scitotenv.2012.10.043 CrossRefGoogle Scholar
  27. Moser S (2010) Putrajaya: Malaysia’s new federal administrative capital. Cities 27(4):285–297. doi: 10.1016/j.cities.2009.11.002 CrossRefGoogle Scholar
  28. Mulligan K, Elliott SJ, Schuster-Wallace C (2012) The place of health and the health of place: dengue fever and urban governance in Putrajaya, Malaysia. Health Place 18(3):613–620CrossRefGoogle Scholar
  29. Nakamura Y, Oke TR (1988) Wind, temperature and stability conditions in an east-west oriented urban canyon. Atmos Environ (1967) 22(12):2691–2700. doi: 10.1016/0004-6981(88)90437-4 CrossRefGoogle Scholar
  30. Ng E, Cheng V (2012) Urban human thermal comfort in hot and humid Hong Kong. Energy Build 55:51–65. doi: 10.1016/j.enbuild.2011.09.025 CrossRefGoogle Scholar
  31. Nyuk Hien Wong YC, Chen Y (2009) Tropical urban heat islands: climate. Buildings and Greenery, Taylor & Francis GroupGoogle Scholar
  32. Oke TR (1987) Boundary layer climates. Methuen, LondonGoogle Scholar
  33. Prado RTA, Ferreira FL (2005) Measurement of albedo and analysis of its influence the surface temperature of building roof materials. Energy Build 37(4):295–300CrossRefGoogle Scholar
  34. Santamouris M (2007) Heat island research in Europe: the state of the art. Adv Building Energy Res 1(1):123–150CrossRefGoogle Scholar
  35. Santamouris M (2013) Environmental design of urban buildings: an integrated approach. Taylor & Francis, LondonGoogle Scholar
  36. Santamouris M, Asimakopoulos DN (2001) Energy and climate in the urban built environment, vol 1. James & James, LondonGoogle Scholar
  37. Shahidan MF, Jones PJ, Gwilliam J, Salleh E (2012) An evaluation of outdoor and building environment cooling achieved through combination modification of trees with ground materials. Build Environ 58:245–257. doi: 10.1016/j.buildenv.2012.07.012 CrossRefGoogle Scholar
  38. Shashua-Bar L, Hoffman ME (2000) Vegetation as a climatic component in the design of an urban street: an empirical model for predicting the cooling effect of urban green areas with trees. Energy Build 31(3):221–235CrossRefGoogle Scholar
  39. Swaid H, Hoffman ME (1990) Prediction of urban air temperature variations using the analytical CTTC model. Energy Build 14(4):313–324CrossRefGoogle Scholar
  40. Taha H (1997) Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy Build 25(2):99–103. doi: 10.1016/S0378-7788(96)00999-1 CrossRefGoogle Scholar
  41. Takebayashi H, Moriyama M (2012) Relationships between the properties of an urban street canyon and its radiant environment: introduction of appropriate urban heat island mitigation technologies. Sol Energy 86(9):2255–2262CrossRefGoogle Scholar
  42. Wilmers F (1990) Effects of vegetation on urban climate and buildings. Energy Build 15(3–4):507–514CrossRefGoogle Scholar
  43. Wong NH, Chen Y (2009) Tropical urban heat islands: climate. Taylor & Francis, Buildings and GreeneryGoogle Scholar
  44. Xi T, Li Q, Mochida A, Meng Q (2012) Study on the outdoor thermal environment and thermal comfort around campus clusters in subtropical urban areas. Build Environ 52:162–170. doi: 10.1016/j.buildenv.2011.11.006 CrossRefGoogle Scholar
  45. Yang L, Li Y (2009) City ventilation of Hong Kong at no-wind conditions. Atmos Environ 43(19):3111–3121CrossRefGoogle Scholar
  46. Zhang XX, Wu PF, Chen B (2010) Relationship between vegetation greenness and urban heat island effect in Beijing City of China. Procedia Environ Sci 2:1438–1450. doi: 10.1016/j.proenv.2010.10.157 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Adeb Qaid Ahmed
    • 1
    Email author
  • Dilshan Remaz Ossen
    • 1
  • Elmira Jamei
    • 1
  • Norhashima Abd Manaf
    • 1
  • Ismail Said
    • 1
  • Mohd Hamdan Ahmad
    • 1
    • 2
  1. 1.Faculty of Built EnvironmentUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Institute Sultan Iskandar (ISI)Universiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations