Theoretical and Applied Climatology

, Volume 119, Issue 1–2, pp 379–389 | Cite as

Toward a record of Central Pacific El Niño events since 1880

  • M. Pascolini-CampbellEmail author
  • D. Zanchettin
  • O. Bothe
  • C. Timmreck
  • D. Matei
  • J. H. Jungclaus
  • H.-F. Graf
Original Paper


We investigate the various methods currently available for distinguishing between the Central Pacific (CP) El Niño (or “El Niño Modoki”) and the canonical El Niño by considering nine different methods and five sea surface temperature (SST) datasets from 1880 to 2010. This is aimed to demonstrate the variety which exists between different classification methods as well as to help identify years which can be more confidently classified as CP events. Classifying CP El Niños based on the greatest convergence between methods and between SST datasets provides a more robust identification of these events. Analysis of the SST patterns of the CP years identified demonstrates several misclassifications, stressing the importance of not relying solely on indices. After removal, 14 years which are classified the most consistently as CP events include the following: 1885/1886, 1914/1915, 1940/1941, 1958/1959, 1963/1964, 1968/1969, 1977/1978, 1986/1987, 1990/1991, 1991/1992, 1994/1995, 2002/2003, 2003/2004, and 2004/2005. Our findings also indicate the intermittent appearance of CP events throughout the time period investigated, inciting the role of multidecadal natural climate variability in generating CP El Niños.


Central Pacific Eastern Pacific Positive SSTA SSTA Pattern Pacific SSTA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Aiko Voigt and an anonymous reviewer for their useful comments on the manuscript. The study also benefitted from critical comments from two anonymous reviewers on an earlier version of this work. MP-C would like to thank the guest program of the International Max Planck Research School on Earth System Modeling (IMPRS-ESM) which made this research possible. DZ and CT acknowledge funding from the Federal Ministry for Education and Research in Germany (BMBF) through the research program “MiKlip” [FKZ: 01LP1158A (DZ)/01LP1130A (CT)]. OB acknowledges funding through the Cluster of Excellence “CliSAP,” University of Hamburg, funded through the German Science Foundation (DFG). The authors are grateful to the National Oceanic and Atmospheric Administration Earth System Research Laboratory/Physical Sciences Division for providing their data products at and the Met Office Hadley Center for providing HadISST data at


  1. Alexander M, Bladé I, Newman M, Lanzante J, Lau N, Scott J (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Climate 15(16):2205CrossRefGoogle Scholar
  2. Ashok K, Behera SK, Rao SA, Weng H, Yamagata TJ (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi: 10.1029/2006JC003798
  3. Deser C, Phillips AS, Alexander MA (2010) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett 37:L10701. doi: 10.1029/2010GL043321
  4. Feng JA, Wang L, Chen W, Fong SK, Leong KC (2010) Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter. J Geophys Res 115:D24122. doi: 10.1029/2010JD014761
  5. Giese BS, Ray S (2011) El Nino variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res 116:C02024. doi: 10.1029/2010JC006695
  6. Graf H-F, Zanchettin D (2012) Central Pacific El Niño, the “subtropical bridge” and Eurasian Climate. J Geophys Res 117:D01102. doi: 10.1029/2011JD016493
  7. Guilyardi E (2006) El Niño-mean sate-seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26(4):329–348. doi: 10.1007/s00382-005-0084-6 CrossRefGoogle Scholar
  8. Hendon HH, Lim E, Wang GM, Alves O, Hudson D (2009) Prospects for predicting two flavors of El Niño. Geophys Res Lett 36:L19713. doi: 10.1029/2009GL040100
  9. Kao H-Y, Yu J-Y (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Climate 22:615–632 doi: 10.1175/5112008JCLI2309.1 Google Scholar
  10. Kaplan A, Cane M, Kushnir Y, Clement A, Blumenthal M, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18,567–18,589. doi: 10.1029/97JC01736 CrossRefGoogle Scholar
  11. Kim ST, Yu J-Y (2012) The two types of ENSO in CMIP5 models. Geophys Res Lett. doi: 10.1029/2012GL052006 Google Scholar
  12. Kim H, Webster PJ, Curry JA (2009) Impact of shifting patterns of Pacific Ocean warming on north Atlantic tropical cyclones. Science 325(5936):77–80. doi: 10.1126/science.1174062 CrossRefGoogle Scholar
  13. Kug J-S, Jin FF, An S-I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Climate 22:1499–1515. doi: 10.1175/2008JCLI2624.1 CrossRefGoogle Scholar
  14. L’Heureux M, Collins D, Hu Z-Z (2012) Linear trends in sea surface temperature of the tropical Pacific Ocean and implications for the El Niño-Southern Oscillation. Clim Dyn 1–14. doi: 10.1007/s00382-012-1331-2
  15. Larkin NK, Harrison DE (2005) On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys Res Lett 32:L13705. doi: 10.1029/2005GL022738
  16. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37. doi: 10.1029/2010GL044007
  17. Lian T, Chen D (2012) An evaluation of rotated EOF analysis and its application to tropical pacific SST variability. J Climate. doi: 10.1175/JCLI-D-11- 00663 Google Scholar
  18. McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709. doi: 10.1029/2011GL048275
  19. Newman M, S-I Shin, Alexander MA (2011) Natural variation in ENSO flavors. Geophys Res Lett 38:L14705. doi: 10.1029/2011GL047658
  20. Nicholls N (2008) Recent trends in the seasonal and temporal behaviour of the El Niño Southern Oscillation. Geophys Res Lett 35(L19703). doi: 10.1029/2008GL034499
  21. Rasmusson EM, Carpenter TH (1982) Variation in tropical sea surface temperature and surface wind fields associated with Southern Oscillation/El Niño. Mon Weather Rev 110:354–384CrossRefGoogle Scholar
  22. Ray S, Giese BS (2012) Historical changes in El Nino and La Nina characteristics in an ocean reanalysis. J Geophys Res 117:C11007. doi: 10.1029/2012JC008031
  23. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:D144407. doi: 10.1029/2002JD002670
  24. Ren H, Jin F-F (2011) Niño indices for two types of ENSO NIÑO indices for two types of ENSO. Geophys Res Lett 2011–02;38:n-a-n/aGoogle Scholar
  25. Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997). J Climate 17:2466–2477. doi: 10.1175/1520-0442 CrossRefGoogle Scholar
  26. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Climate 21:2283–2296. doi: 10.1175/2007JCLI2100.1 CrossRefGoogle Scholar
  27. Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38:L10704. doi: 10.1029/2011GL047364
  28. Trenberth KE, Hoar TJ (1997) El Niño and climate change. Geophys Res Lett 24(23):3057–3060. doi: 10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2 CrossRefGoogle Scholar
  29. Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Climate 14(8):1697–1701. doi: 10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2 CrossRefGoogle Scholar
  30. Walker GT (1923) Correlation in seasonal variations of weather. III: a preliminary study of world weather. Mem Indian Meteor Dept 24:75–131Google Scholar
  31. Walker GT (1924) Correlation in seasonal variations of weather. IV: a further study of world weather. Mem Indian Meteor Dept 24:275–332Google Scholar
  32. Worley SJ, Woodruff SD, Reynolds RW, Lubker SJ, Lott N (2005) ICOADS release 2.1 data and products. Int J Climatol 25:823–842CrossRefGoogle Scholar
  33. Yeh S, Kug J, Dewitte B, Kown M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461(7263):511–U70. doi: 10.1038/nature08316 CrossRefGoogle Scholar
  34. Yeh S-W, Kirtman BP, Kug J-S, Park W, Latif M (2011) Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophys Res Lett 38:L02704, doi: 10.1029/2010GL045886
  35. Yu J, Kim ST (2010) Identification of Central-Pacific and Eastern-Pacific types of ENSO in CMIP3 models EP AND CP ENSO IN CMIP3 MODELS. Geophys Res Lett 2010-08;37:n-a-n/aGoogle Scholar
  36. Zanchettin D, Franks SW, Traverso P, Tomasino M (2008) On ENSO impacts on European wintertime rainfalls and their modulation by the NAO and the Pacific multidecadal variability described through the PDO index. Int J Climatol 28:995–1006. doi: 10.1002/joc.1601 CrossRefGoogle Scholar
  37. Zhang Y, Wallace JM, Battisti DS (1996) ENSO-like interdecadal variability: 1900–93. J Climate 10:1004–1020. doi: 10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • M. Pascolini-Campbell
    • 1
    • 2
    Email author
  • D. Zanchettin
    • 2
  • O. Bothe
    • 3
  • C. Timmreck
    • 2
  • D. Matei
    • 2
  • J. H. Jungclaus
    • 2
  • H.-F. Graf
    • 4
  1. 1.Department of Earth and Environmental SciencesColumbia UniversityNew York USA
  2. 2.Max Planck Institute for MeteorologyHamburgGermany
  3. 3.Leibniz Institute of Atmospheric Physicsat the University of RostockKühlungsbornGermany
  4. 4.University of CambridgeCambridgeUK

Personalised recommendations