Theoretical and Applied Climatology

, Volume 117, Issue 3–4, pp 613–624 | Cite as

Thermal comfort and tourism climate changes in the Qinghai–Tibet Plateau in the last 50 years

Original Paper

Abstract

In this paper, the thermal comfort and its changes in the Qinghai–Tibet Plateau over the last 50 years have been evaluated by using the physiological equivalent temperature (PET), and a more complete tourism climate picture is presented by the Climate–Tourism–Information Scheme (CTIS). The results show that PET classes in the Qinghai–Tibet Plateau cover six out of the nine-point thermal sensation scale — very cold, cold, cool, slightly cool, neutral and slightly warm — and cold stress is prevailing throughout the year. A small number of slightly cool/warm and neutral days occur in summer months. There occur no warm, hot and very hot days. The frequency of PET classes varies among regions, depending on their altitude/latitude conditions. Xining, Lhasa and Yushu are the top three cities in terms of thermal favorability. With global warming, annual cumulative number of thermally favorable days has been increasing, and that of cold stress has been reducing. The change is more obvious in lower elevation than that in higher elevation regions. The improving thermal comfort in the Qinghai–Tibet Plateau might be a glad tiding for local communities and tourists. Besides PET, CTIS can provide a number of additional bioclimatic information related to tourism and recreational activities. CTIS for Lhasa and Xining shows that sunshine is plentiful all the year round, and windy days occur frequently from late January to early May. This is a useful bioclimatic information for tourism authorities, travel agencies, resorts and tourists.

References

  1. Anderson GS (1999) Human morphology and temperature regulation. Int J Biometeorol 43(3):99–109. doi:10.1007/s004840050123 CrossRefGoogle Scholar
  2. Çahşkan O, Çiçek İ, Matzarakis A (2012) The climate and bioclimate of Bursa (Turkey) from the perspective of tourism. Theor Appl Climatol 107:417–425. doi:10.1007/s 00704-011-0489-6 CrossRefGoogle Scholar
  3. Chen L, Ng E (2012) Outdoor thermal comfort and outdoor activities: a review of research in the past decade. Cities 29(2):118–125. doi:10.1016/j.cities.2011.08.006 CrossRefGoogle Scholar
  4. Chen L, Fang XQ, Li S (2007) The impact of climate warming on the southern boundary of Chinese freezing and cold regions and the heating energy consumption. Chin Sci Bull 52(10):1195–1198. doi:10.1007/s11434-007-0386-7 (in Chinese) CrossRefGoogle Scholar
  5. China Meteorological Administration (2013) The daily data set of ground climatic data in China. http://old-cdc.cma.gov.cn/shuju/index3.jsp?tpcat=SURF_CLI_CHN_MUL_DAY
  6. de Freitas CR (2003) Tourism climatology: evaluating environmental information for decision making and business planning in the recreation and tourism sector. Int J Biometeorol 48(1):45–54. doi:10.1007/s00484-003-0177-z CrossRefGoogle Scholar
  7. Djongyang N, Tchinda R, Njomo D (2010) Thermal comfort: a review paper. Renew Sustain Energy Rev 14(9):2626–2640. doi:10.1016/j.rser.2010.07.040 CrossRefGoogle Scholar
  8. Eludoyin OM, Adelekan IO (2013) The physiologic climate of Nigeria. Int J Biometeorol 57(2):241–264. doi:10.1007/s00484-012-0549-3 CrossRefGoogle Scholar
  9. Endler C, Oehler K, Matzarakis A (2010) Vertical gradient of climate change and climate tourism conditions in the Black Forest. Int J Biometeorol 54(1):45–61. doi:10.1007/s00484-009-0251-2 CrossRefGoogle Scholar
  10. Farajzadeh H, Matzarakis A (2012) Evaluation of thermal comfort conditions in Ourmieh Lake, Iran. Theor Appl Climatol 107:451–459. doi:10.1007/s00704-011-0492-y CrossRefGoogle Scholar
  11. Fuller S, Bulkeley H (2013) Changing countries, changing climates: achieving thermal comfort through adaptation in everyday activities. Area 45(1):63–69. doi:10.1111/j.1475-4762.2012.01105.x CrossRefGoogle Scholar
  12. Goh C (2012) Exploring impact of climate on tourism demand. Ann Tourism Res 39(4):1859–188. doi:10.1016/j.annals.2012.05.027 CrossRefGoogle Scholar
  13. Hall R, Roy D, Boling D (2004) Pleistocene migration routes into the Americas: human biological adaptations and environmental constraints. Evolution Anthropol 13(4):132–144. doi:10.1002/evan.20013 CrossRefGoogle Scholar
  14. Hamilton JM, Lau MA (2005) The role of climate information in tourist destination choice decision-making. In: Proceedings of the 17th International Congress of Biometeorology (ICB 2005), Garmisch-Partenkirchen, Germany, 9–5 September 2005. Deutscher Wetterdienst, Offenbach am Main, pp 608–611Google Scholar
  15. Holmes MJ, Hacker JN (2007) Climate change, thermal comfort and energy: meeting the design challenges of the 21st century. Energ, Buildings 39(7):802–814. doi:10.1016/j.enbuild.2007.02.009 CrossRefGoogle Scholar
  16. Höppe PR (1993) Heat balance modeling. Experientia 49(9):741–746CrossRefGoogle Scholar
  17. Höppe PR (1999) The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75. doi:10.1007/s004840050118 CrossRefGoogle Scholar
  18. IPCC (2007) Climate change 2007: The physical science basis: contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  19. Kaiser K, Lai ZP, Schneider B, Reudenbach C, Miehe G, Brückner H (2009) Stratigraphy and palaeoenvironmental implications of Pleistocene and Holocene Aeolian sediments in the Lhasa area, southern Tibet (China). Palaeogeogr Palaeoclimatol Palaeoecol 271(3–4):329–342. doi:10.1016/j.palaeo.2008.11.004 CrossRefGoogle Scholar
  20. Kendrick, RJ (2005) An introduction using SPSS. Pearson Education Canada, Newmarket CanadaGoogle Scholar
  21. Knez I, Thorsson S (2006) Influences of culture and environmental attitude on thermal, emotional and perceptual evaluations of a public square. Int J Biometeorol 50:258–268. doi:10.1007/s00484-006-0024-0 CrossRefGoogle Scholar
  22. Kozak M (2002) Comparative analysis of tourist motivations by nationality and destinations. Tourism Manage 23(3):221–232. doi:10.1016/S0261-5177(01)00090-5 CrossRefGoogle Scholar
  23. Li CL, Kang SC (2006) Review of the studies on climate change since the last inter-glacial period on the Tibetan Plateau. J Geogr Sci 16(3):337–345. doi:10.1007/s11442-006-0309-6 CrossRefGoogle Scholar
  24. Lin TP, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52:281–290. doi:10.1007/s00484-007-0122-7 CrossRefGoogle Scholar
  25. Lin TP, Matzarakis A (2011) Tourism climate information based on human thermal perception in Taiwan and Eastern China. Tourism Manage 32:492–500. doi:10.1016/j.tourman.2010.03.017 CrossRefGoogle Scholar
  26. Lin TP, Hwang CC, Cheng HY (2006) The influence of climate information on travel arrangements. In: Proceedings of the 8th leisure, recreation and tourism research symposium, Taipei. Outdoor Recreation Association, Taipei, pp 120–126Google Scholar
  27. Madsen DB, Ma H, Brantingham PJ, Gao X, Rhode D, Zhang H, Olsen JW (2006) The late Upper Paleolithic occupation of the northern Tibetan Plateau margin. J Archaeol Sci 33:1433–1444. doi:10.1016/j.jas.2006.01.017 CrossRefGoogle Scholar
  28. Matzarakis A, Mayer H (1996) Another kind of environmental stress: thermal stress. WHO News 18:7–10Google Scholar
  29. Matzarakis A, Mayer H (1997) Heat stress in Greece. Int J Biometeorol 41:34–39. doi:10.1007/s004840050051 CrossRefGoogle Scholar
  30. Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84. doi:10.1007/s004840050119 CrossRefGoogle Scholar
  31. Matzarakis A, de Freitas C, Scott D (2004) Advances in tourism climatology. Berichte des Meteorologischen Institutes der Universität, FreiburgGoogle Scholar
  32. Matzarakis A, Rutz F, Mayer H (2007) Modeling radiation fluxes in simple and complex environments – application of the RayMan model. Int J Biometeorol 51:323–334. doi:10.1007/s00484-006-0061-8 CrossRefGoogle Scholar
  33. Matzarakis A, Rutz F, Mayer H (2010) Modeling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54:131–139. doi:10.1007/s00484-009-0261-0 CrossRefGoogle Scholar
  34. Matzarakis A, Hammerle M, Koch E, Rudel E (2012) The climate tourism potential of Alpine destinations using the example of Sonnblick, Rauris and Salzburg. Theorl Appl Climatol 110:645–658. doi:10.1007/s00704-012-0686-y CrossRefGoogle Scholar
  35. Mayer H, Höppe PR (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38(1):43–49. doi:10.1007/BF00866252 CrossRefGoogle Scholar
  36. Mayhew B, Bellezza J, Wheeler T, Taylor C (1999) Lonely Planet Tibet, 4th edn. Lonely Planet Publications, MelbourneGoogle Scholar
  37. McGregor GR (2012) Human biometeorology. Prog Physl Geogr 36(1):93–109. doi:10.1177/0309133311417942 CrossRefGoogle Scholar
  38. Mousavi ME, Irish JL, Frey AE, Olivera F, Edge BL (2011) Global warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding. Clim Chang 104(3–4):575–597. doi:10.1007/s10584-009-9790-0 CrossRefGoogle Scholar
  39. Oliver JE (2011) Climate and man’s environment: an introduction to applied climatology. John Wiley, New YorkGoogle Scholar
  40. Rhode D, Zhang HY, Madsen DB, Gao X, Brantingham PJ, Ma HZ, Olsen JW (2007) Epipaleolithic/early Neolithic settlements at Qinghai Lake, western China. J Archaeol Sci 34(4):600–612. doi:10.1016/j.jas.2006.06.016 CrossRefGoogle Scholar
  41. Solymosi N, Torma C, Kern A et al (2010) Changing climate in Hungary and trends in the annual number of heat stress days. Int J Biometeorol 54(4):423–431. doi:10.1007/s00484-009-0293-5 CrossRefGoogle Scholar
  42. Statistics Bureau of Qinghai Province (2001–2011), Qinghai statistical yearbook. China Statistics Press, Beijing, China (in Chinese)Google Scholar
  43. Statistics Bureau of Tibet Autonomous Region (2001–2011) Tibet statistical yearbook. China Statistics Press, Beijing, China (in Chinese)Google Scholar
  44. Taffé P (1997) A qualitative response model of thermal comfort. Build Env 32:115–121. doi:10.1016/S0360-1323(96)00035-2 CrossRefGoogle Scholar
  45. Terjung WH (1966) Physiologic climates of the conterminous United States: a bioclimatic classification based on man. Ann Assoc Am Geogr 56(1):141–179CrossRefGoogle Scholar
  46. Thorsson S, Lindberg F, Bj¨orklund J, Holmer B, Rayner D (2011) Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate change: the influence of urban geometry. Int J Climatol 31:324–335. doi:10.1002/joc.2231 CrossRefGoogle Scholar
  47. Tromp SW (1963) Medical biometeorology. Elsevier, AmsterdamGoogle Scholar
  48. Wong SL, Wan KKW, Yang L, Lam JC (2012) Changes in bioclimates in different climates around the world and implications for the built environment. Build Environ 57:214–222. doi:10.1016/j.buildenv.2012.05.006 CrossRefGoogle Scholar
  49. Yasuhara K, Murakami S, Mimura N (2007) Influence of global warming on coastal infrastructural instability. Sustain Sci 2(1):13–25. doi:10.1007/s11625-006-0015-4 CrossRefGoogle Scholar
  50. Zaninović K, Matzarakis A (2009) The biometeorological leaflet as a means conveying climatological information to tourists and the tourism industry. Int J Biometeorol 53:369–374. doi:10.1007/s00484-009-0219-2 CrossRefGoogle Scholar
  51. Zaninović K, Matzarakis A, Cegnar T (2006) Thermal comfort trends and variability in the Croatian and Slovenian mountains. Meteorol Z 15(2):243–251. doi:10.1127/0941-2948/2006/0119 CrossRefGoogle Scholar
  52. Zheng ZF (2011) Characteristics of climate warming and human body comfort index in Beijing during last 50 years. Adv Mater Res 183–185:1105–1109. doi:10.4028/www.scientific.net/AMR.183-185.1105 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Department of Earth SciencesZhejiang UniversityHangzhouChina

Personalised recommendations