Theoretical and Applied Climatology

, Volume 116, Issue 1–2, pp 203–210 | Cite as

Climate variability analysis of winter temperatures in the central Mediterranean since 1500 AD

  • Nazzareno Diodato
  • Gianni BellocchiEmail author
  • Chiara Bertolin
  • Dario Camuffo
Original Paper


This work presents the reconstruction of a time series of annual winter air temperatures across Central and Southern Italy for the period 1500–2010 that largely overlaps the Little Ice Age (LIA) period (1300–1850). A detailed analysis was undertaken on winter mean temperature data using both observations (1871–2010) and proxy-based reconstructions (1500–1870). Based on this homogeneized reconstructed series, a time-dependency in low-frequency time-pattern of temperatures (70- and 130-year cycles) was suggested although the temporal oscillation was not merely periodic. The LIA was characterized by marked climatic variability over this part of Southern Europe, with particular emphasis during the so-called “Maunder Minimum” (MM), between 1645 and 1715. The interannual variability of low temperatures, in particular, makes the MM an outstanding climatic period. There is some consistency that patterns of warming conditions observed in recent times also occurred in the past. Quasiperiodic cycles appear as a consequence of stochastic resonance emerging in long time scales but the variability inherent to the series of winter temperatures, although likely generated by processes internal to the climate system, is difficult to forecast because the system is chaotic and affected by unpredictable noise.


Winter Temperature Stochastic Resonance Maunder Minimum Average Winter Temperature Central England Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baiada E (1986) Da Beccari a Ranuzzi: la meteorologia nell’Accademia Bolognese nel XVIII secolo. In: Finzi R (ed) Le meteore ed il frumento: clima, agricoltura, meteorologia a Bologna nel ‘700. Il Mulino, Bologna, Italy, pp 99–261 (in Italian)Google Scholar
  2. Barriendos Vallvé M, Martin-Vide J (1998) Secular climatic oscillations as indicated by catastrophic floods in the Spanish Mediterranean coastal area (14th–19th centuries). Clim Chang 38:473–491CrossRefGoogle Scholar
  3. Bergström H, Moberg A (2002) Daily air temperature and pressure series for Uppsala (1722-1998). Clim Chang 53:213–252Google Scholar
  4. Beniston M (1994) Mountain environment in changing climates. Biddles, London, UKCrossRefGoogle Scholar
  5. Benzi R, Parisi G, Sutera A, Vulpiani A (1982) Stochastic resonance in climatic change. Tellus 34:10–16CrossRefGoogle Scholar
  6. Bradley RS (1991) Pre-instrumental climate: how has climate varied during the past 500 years? In: Schlesinger ME (ed) Greenhouse gas-induced climatic change: a critical apprisal of simulations and observations. Elsevier, Amsterdam, The Netherlands, pp 391–410CrossRefGoogle Scholar
  7. Bradley RS, Jones PD (1992) Climate since A.D. 1500: introduction. In: Bradley RS, Jones PD (eds) Climate since A.D. 1500. Routledge, London, UK, pp 1–16Google Scholar
  8. Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe—the state of the art. Clim Chang 70:363–430CrossRefGoogle Scholar
  9. Brázdil R, Dobrovolný P, Luterbacher J, Moberg A, Pfister C, Wheeler D, Zorita E (2010) European climate of the past 500 years: new challenges for historical climatology. Clim Chang 101:7–40CrossRefGoogle Scholar
  10. Brunetti M, Buffoni L, Lo Vecchio G, Maugeri M, Nanni T (2001) Tre secoli di meteorologia a Bologna. Edizioni CUSL, Milan, Italy (in Italian)Google Scholar
  11. Camuffo D (1987) Freezing of the Venetian Lagoon since the 9th century AD in comparison to the climate of Western Europe and England. Clim Chang 10:43–66CrossRefGoogle Scholar
  12. Camuffo D (2002) History of the long series of daily air temperature in Padova (1725–1998). Clim Chang 53:7–75CrossRefGoogle Scholar
  13. Camuffo D, Bertolin C (2012a) The earliest temperature observations in the world: the Medici network (1654–1670). Clim Chang 111:335–363CrossRefGoogle Scholar
  14. Camuffo D, Bertolin C (2012b) The earliest spirit-in-glass thermometer and a comparison between the earliest CET and Italian observations. Weather 67:206–209CrossRefGoogle Scholar
  15. Camuffo D, Bertolin C (2012c) Recovery of the early period of long instrumental time series of air temperature in Padua, Italy (1716–2007). Phys Chem Earth 40–41:23–31CrossRefGoogle Scholar
  16. Camuffo D, Enzi S (1992) Reconstructing the climate of northern Italy from archive sources. In: Bradley RS, Jones PD (eds) Climate since A.D. 1500. Routledge, London, UK, pp 143–154Google Scholar
  17. Camuffo D, Jones PD (2002) Improved understanding of past climatic variability from early daily European instrumental sources. Kluwer, Boston, USACrossRefGoogle Scholar
  18. Camuffo D, Bertolin B, Barriendos Vallvé M, Dominguez F, Cocheo C, Enzi S, Sghedoni M, della Valle A, Garnier E, Alcoforado M-J, Xoplaki E, Luterbacher J, Diodato N, Maugeri M, Nunes MF, Rodriguez R (2010a) 500-Year temperature and precipitation reconstruction in the Mediterranean Basin. Clim Chang 101:169–199CrossRefGoogle Scholar
  19. Camuffo D, Bertolin B, Jones PD, Cornes R, Garnier E (2010b) The earliest daily barometric pressure readings in Italy: Pisa ad 1657–1658 and Modena ad 1694, and the weather over Europe. Holocene 20:337–349CrossRefGoogle Scholar
  20. Chinnici I, Foderà Serio G, Granata L (2000) Duecento anni di meteorologia all’Osservatorio Astronomico di Palermo. Osservatorio Astronomico G.S. Vaiana, Palermo, Italy (in Italian)Google Scholar
  21. Colacino M, Rovelli A (1983) The yearly averaged air temperature in Rome from 1782 to 1975. Tellus 35A:389–397CrossRefGoogle Scholar
  22. Corradi A (1972) Corradi Alfonso: Annali delle epidemie occorse in Italia dalle prime memorie fino al 1850, five volumes, reprinted by Società medico-chirurgica di Bologna. Forni, Bologna, Italy (in Italian)Google Scholar
  23. Diodato N (2007) Climatic fluctuations in Southern Italy since the 17th century: reconstruction with precipitation records at Benevento. Clim Chang 80:411–431CrossRefGoogle Scholar
  24. Diodato N, Bellocchi G (2011a) Historical perspective of drought response in central-southern Italy. Clim Res 49:189–200CrossRefGoogle Scholar
  25. Diodato N, Bellocchi G (2011b) Discovering the anomalously cold Mediterranean winters during the Maunder minimum. Holocene 22:589–596CrossRefGoogle Scholar
  26. Diodato N, Ceccarelli M, Bellocchi G (2008) Decadal and century-long changes in the reconstruction of erosive rainfall anomalies in a Mediterranean fluvial basin. Earth Surf Process Landforms 33:2078–2093CrossRefGoogle Scholar
  27. Diodato N, Bellocchi G, Bertolin C, Camuffo D (2010) Multiscale regression model to infer historical temperatures in a central Mediterranean sub-regional area. Clim Past Discuss 6:1–25CrossRefGoogle Scholar
  28. Diodato N, Bellocchi G, Bertolin C, Camuffo D (2012) Mixed nonlinear regression for modelling historical temperatures in Central-Southern Italy. Theor Appl Climatol. doi: 10.1007/s00704-012-0775-y Google Scholar
  29. Eckmann J-P, Kamphorst SO, Ruelle B (1987) Recurrence plots of dynamical systems. Europhys Lett 4:973–977CrossRefGoogle Scholar
  30. Eddy JA (1976) The Maunder minimum. Science 18:1189–1202CrossRefGoogle Scholar
  31. Esper J, Cook ER, Schweingruber FH (2002) Low frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253CrossRefGoogle Scholar
  32. Fagan B (2001) The Little Ice Age: how climate made history, 1300–1850. New York, USA, BasicGoogle Scholar
  33. Ferrari U (1977) Giovan Battista Moio, Gregorio Susanna: Diario di quanto successe in Catanzaro dal 1710 al 1769. Edizioni Effe Emme, Chiaravalle Centrale, Italy (in Italian)Google Scholar
  34. Findlay A (1911) The phase rule and its applications (3rd edition). Longmans, London, UKGoogle Scholar
  35. García-Herrera R, Luterbacher J, Lionello P, González-Rouco F, Ribera P, Rodó X, Kull C, Zerefos C (2007) Reconstruction of past Mediterranean climate. Eos Trans Am Geophys Union 88:111. doi: 10.1029/2007EO090010 CrossRefGoogle Scholar
  36. Garnier E (2007) La ville face aux caprices du fleuve XVIe-XVIIIe siècle. Histoire Urbaine 18:41–60 (in French)Google Scholar
  37. Ge Q-S, Zheng J-Y, Hao Z-X, Zhang P-Y, Wang WC (2005) Reconstruction of historical climate in China: high-resolution precipitation data from Qing Dynasty archives. Bull Am Meteorol Soc 86:671–679CrossRefGoogle Scholar
  38. Gómez-Navarro JJ, Montávez JP, Jerez S, Jiménez-Guerrero P, Lorente-Plazas R, González-Rouco JF, Zorita E (2011) A regional climate simulation over the Iberian Peninsula for the last millennium. Clim Past 7:451–472CrossRefGoogle Scholar
  39. Grove JM (1988) The Little Ice Age. Methuen, London, UKCrossRefGoogle Scholar
  40. Hansen J, Ruedy R, Sato M, Imhoff M, Lawrence W, Easterling D, Peterson T, Karl T (2001) A closer look at United States and global surface temperature change. J Geophys Res 106:947–963Google Scholar
  41. Jones PD, Lister DH (2002) The daily temperature record for St. Petersburg (1743-1996). Clim Chang 53:253–267Google Scholar
  42. Jones PD, Briffa KR, Osborn TJ, Lough JM, van Ommen TD, Vinther BM, Luterbacher J, Wahl ER, Zwiers FW, Mann ME, Schmidt GA, Ammann CM, Buckley BM, Cobb KM, Esper J, Goosse H, Graham N, Jansen E, Kiefer T, Kull C, Küttel M, Mosley-Thompson E, Overpeck JT, Riedwyl N, Schulz M, Tudhope AW, Villalba R, Wanner H, Wolff E, Xoplaki E (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49CrossRefGoogle Scholar
  43. Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic, London, UKGoogle Scholar
  44. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88CrossRefGoogle Scholar
  45. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32, L20708. doi: 10.1029/2005GL024233 CrossRefGoogle Scholar
  46. Lamb HH (1982) Climate history and modern world. Methuen, London, UKCrossRefGoogle Scholar
  47. Lattanzi B (2000) Storia di Foligno, vol. III (1439–1797). IBN Editore, Rome, Italy (in Italian)Google Scholar
  48. Legrand JP, Le Goff M (1992) Les observations météorologiques de Louis Morin. Monographie no 6, Météorologie Nationale, Paris, Italy (in French)Google Scholar
  49. Lizier JT, Dawson TJ (2005) On the periodicity of time-series network and service metrics. In: Proceedings of the IEEE International Region 10 Conference (Tencon ‘05), 21–24 November, Melbourne, Australia, pp 1–6Google Scholar
  50. Luterbacher J, Xoplaki E (2003) 500-Year winter temperature and precipitation variability over the Mediterranean area and its connection to the large-scale atmospheric circulation. In: Bolle HJ (ed) Mediterranean climate: variability and trends. Springer, Berlin, Germany, pp 133–153CrossRefGoogle Scholar
  51. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503CrossRefGoogle Scholar
  52. Manley G (1974) Central England temperatures: monthly means 1659 to 1973. Q J R Meteorol Soc 100:389–405CrossRefGoogle Scholar
  53. Maraldi M (1735) Maraldi, Giacomo Filippo, Observations météorologiques faites pendant l’année 1732. In: Maraldi M (ed) Histoire de l'Académie royale des sciences avec les mémoires de mathématiques et de physique, partie "Mémoires, année 1732", pp 494–496 (in French)Google Scholar
  54. Martín-Vide J, Barriendos Vallvé M (1995) The use of rogation ceremony records in climatic reconstruction: a case study from Catalonia (Spain). Clim Chang 30:201–221CrossRefGoogle Scholar
  55. Maugeri M, Buffoni L, Delmonte B, Fassina A (2002) Daily Milan temperature and pressure series (1763–1998): completing and homogenising the data. Clim Chang 53:119–149CrossRefGoogle Scholar
  56. Mazzarella A (2007) The 60-year solar modulation of global air temperature: the Earth’s rotation and atmospheric circulation connection. Theor Appl Climatol 88:193–199CrossRefGoogle Scholar
  57. Mazzarella A, Scafetta N (2012) Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climate change. Theor Appl Climatol 107:599–609CrossRefGoogle Scholar
  58. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740–1744CrossRefGoogle Scholar
  59. Micela G, Granata L, Iuliano V (2001) Due secoli di Pioggia a Palermo. Palermo: Osservatorio Astronomico di Palermo G.S. Vaiana and University of Palermo, Italy, Palermo (in Italian)Google Scholar
  60. Mihai D, Lohmann G (2007) A hemispheric mechanism for the Atlantic multidecadal oscillation. J Clim 20:2706–2719CrossRefGoogle Scholar
  61. Mitchell T, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  62. Moberg A, Bergström H, Ruiz Krigsman J, Svanered O (2002) Daily air temperature and pressure series for Stockholm (1756-1998). Clim Chang 53:171–212Google Scholar
  63. Parker DE, Horton EB (2005) Uncertainties in the Central England Temperature series since 1878 and some changes to the maximum and minimum series. Int J Climatol 25:1173–1188CrossRefGoogle Scholar
  64. Parker DE, Legg TP, Folland CK (1992) A new daily central England temperature series. Int. J Climatol 12:317–342Google Scholar
  65. Pauling A, Luterbacher J, Wanner H (2003) Evaluation of proxies for European and North Atlantic temperature field reconstructions. Geophys Res Lett 30:1787. doi: 10.1029/2003GL017589 CrossRefGoogle Scholar
  66. Piervitali E, Colacino M (2001) Evidence of drought in western Sicily during the period 1565–1915 from liturgical offices. Clim Chang 49:225–238CrossRefGoogle Scholar
  67. Pyrcz MJ, Deutsch CV (2003) The whole story on the hole effect. Centre for Computational Geostatistics, University of Alberta, Edmonton, CanadaGoogle Scholar
  68. Rutherford S, Mann ME, Osborn TJ (2005) Proxy-based Northern Hemisphere surface temperature reconstructions: sensitivity to method, predictor network, target season, and target domain. J Clim 18:2308–2329CrossRefGoogle Scholar
  69. Schiefer E, Menounos B (2010) Climatic and morphometric controls on the altitudinal range of glaciers, British Columbia, Canada. Holocene 20:517–523CrossRefGoogle Scholar
  70. Slonosky VC, Jones PD, Davies TD (2001) Instrumental pressure observations and atmospheric circulation from the 17th and 18th centuries: London and Paris. Int J Climatol 21:285–298CrossRefGoogle Scholar
  71. Tkachuck RD (1983) The Little Ice Age. Origins 10:51–65Google Scholar
  72. Torrence C, Compo G (2008) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78CrossRefGoogle Scholar
  73. van Oldenborgh GJ, Drijfhout SS, van Ulden AP, Haarsma R, Sterl A, Severijns C, Hazeleger W, Dijkstra HA (2009) Western Europe is warming much faster than expected. Clim Past 5:1–12Google Scholar
  74. Vrac M, Marbaix P, Paillard D, Caveau P (2007) Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe. Clim Past 3:669–682CrossRefGoogle Scholar
  75. Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubash U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker FS, Tarasov P, Wagner M, Widmann M (2009) Mid- to late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828CrossRefGoogle Scholar
  76. Wigley TML (1992) Future climate of the Mediterranean Basin with particular emphasis in changes in precipitation. In: Jeftic L, Milliman JD, Sestini G (eds) Climate change in the Mediterranean. Edward Arnold, London, UK, pp 15–44Google Scholar
  77. Woollings T (2010) Dynamical influences on European climate: an uncertain future. Philos Trans Roy Soc A Math Phys Eng Sci 368:3733–3756CrossRefGoogle Scholar
  78. Woollings T, Hannachi A, Hoskins B (2010) Variability of the North Atlantic eddy-driven jet stream. Q J R Meteorol Soc 136:856–868CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Nazzareno Diodato
    • 1
  • Gianni Bellocchi
    • 2
    • 3
    Email author
  • Chiara Bertolin
    • 4
  • Dario Camuffo
    • 4
  1. 1.MetEROBS—Met European Research ObservatoryBeneventoItaly
  2. 2.MetEROBS—Met European Research Observatory, GEWEX-CEOP NetworkWorld Climate Research ProgrammeBeneventoItaly
  3. 3.Grassland Ecosystem Research UnitFrench National Institute of Agricultural ResearchClermont-FerrandFrance
  4. 4.Atmosphere and Ocean Science InstituteNational Research Council of ItalyPaduaItaly

Personalised recommendations