Theoretical and Applied Climatology

, Volume 116, Issue 1–2, pp 51–60 | Cite as

Evidence for two abrupt warming events of SST in the last century

  • Costas A. VarotsosEmail author
  • Christian L. E. Franzke
  • Maria N. Efstathiou
  • Andrei G. Degermendzhi
Original Paper


We have recently suggested that the warming in the sea surface temperature (SST) since 1900, did not occur smoothly and slowly, but with two rapid shifts in 1925/1926 and 1987/1988, which are more obvious over the tropics and the northern midlatitudes. Apart from these shifts, most of the remaining SST variability can be explained by the El Niño Southern Oscillation and the Pacific Decadal Oscillation (PDO). Here, we provide evidence that the timing of these two SST shifts (around 60 years) corresponds well to the quasi-periodicity of many natural cycles, like that of the PDO, the global and Northern Hemisphere annual mean temperature, the Atlantic Multi-decadal Oscillation, the Inter-Tropical Convergence Zone, the Southwest US Drought data, the length of day, the air surface temperature, the Atlantic meridional overturning circulation and the change in the location of the centre of mass of the solar system. In addition, we show that there exists a strong seasonal link between SST and ENSO over the tropics and the NH midlatitudes, which becomes stronger in autumn of the Northern Hemisphere. Finally, we found that before and after each SST shift, the intrinsic properties of the SST time series obey stochastic dynamics, which is unaffected by the modulation of these two shifts. In particular, the SST fluctuations for the time period between the two SST shifts exhibit 1/f-type long-range correlations, which are frequently encountered in a large variety of natural systems. Our results have potential implications for future climate shifts and crossing tipping points due to an interaction of intrinsic climate cycles and anthropogenic greenhouse gas emissions.


Pacific Decadal Oscillation Atlantic Meridional Overturning Circulation Detrended Fluctuation Analysis Pacific Decadal Oscillation Index Northern Middle Latitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the reviewers for their fruitful comments and suggestions.


  1. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteer DM, Pielke RS, Pierrenhumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM (2003) Abrupt climate change. Science 299:2005–2010CrossRefGoogle Scholar
  2. Anneville O, Souissi S, Gammeter S, Straile D (2004) Seasonal and inter-annual scales of variability in phytoplankton assemblages: comparison of phytoplankton dynamics in three peri-alpine lakes over a period of 28 years. Freshw Biol 49:98–115CrossRefGoogle Scholar
  3. Audit B, Bacry E, Muzy JF, Arneodo A (2002) Wavelets based estimators of scaling behaviour IEEE, Trans. Inf Theory 48(11):2938–2954CrossRefGoogle Scholar
  4. Ausloos M, Ivanova K (2001) Power-law correlations in the southern-oscillation-index fluctuations characterizing El Niño. Phys Rev E Stat Nonlin Soft Matter Phys 63(4 Pt 2):047201, Epub 2001 Mar 28CrossRefGoogle Scholar
  5. Belolipetsky PV, Bartsev SI, Degermendzhi AG, Hsu HH, Varotsos CA (2013) Empirical evidence for a double step climate change in twentieth century.
  6. Brooks CEP (1925) The problem of mild polar climates. Quart J Roy Meteorol Soc 51:83–94CrossRefGoogle Scholar
  7. Budyko MI (1962) Some ways of influencing the climate. Meteorl Gidrol 2:3–8Google Scholar
  8. Chambers DP, Merrifield MA, Nerem RS (2012) Is there a 60-year oscillation in global mean sea level? Geophys Res Lett 39, L18607. doi: 10.1029/2012GL052885 CrossRefGoogle Scholar
  9. Chen Z, Hu K, Carpena P, Bernaola-Galvan P, Stanley HE, Ivanov P (2005) Effect of non-linearities on detrended fluctuation analysis. Phys Rev E 71:011104. doi: 10.1103/PhysRevE.71.011104, 2005 CrossRefGoogle Scholar
  10. Cracknell AP, Varotsos CA (1994) Ozone depletion over Scotland as derived from Nimbus-7 TOMS measurements. Int J Rem Sens 15:2659–2668Google Scholar
  11. Cracknell AP, Varotsos CA (1995) The present status of the total ozone depletion over Greece and Scotland- A comparison between Mediterranean and more northerly latitudes. Int J Rem Sens 16:1751–1763Google Scholar
  12. Efstathiou MN, Varotsos C (2010) On the altitude dependence of the temperature scaling behavior at the global troposphere. Int J Rem Sens 31:343–349Google Scholar
  13. Efstathiou MN, Tzanis C, Cracknell A, Varotsos CA (2011) New features of the land and sea surface temperature anomalies. Int J Rem Sens 32:3231–3238Google Scholar
  14. Foley JA (2005) Tipping points in the Tundra. Science 310:627–628. doi: 10.1126/science.1120104 CrossRefGoogle Scholar
  15. Franzke C (2012a) On the statistical significance of surface air temperature trends in the Eurasian Arctic region. Geophys Res Lett 39:L23705. doi: 10.1029/2012GL054244 CrossRefGoogle Scholar
  16. Franzke C (2012b) Nonlinear trends, long-range dependence, and climate noise properties of surface temperature. J Climate 25:4172–4183. doi: 10.1175/JCLI-D-11-00293.1 CrossRefGoogle Scholar
  17. Franzke C (2013) A novel method to test for significant trends in extreme values in serially dependent time series. Geophys Res Let 40(7):1391–1395. doi: 10.1002/grl.50301 CrossRefGoogle Scholar
  18. Gerten D, Adrian R (2000) Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol Oceanogr 45:1058–1066CrossRefGoogle Scholar
  19. Grassl H (2000) Status and improvements of coupled general circulation models. Science 288:1991–1997. doi: 10.1126/science.288.5473.1991 CrossRefGoogle Scholar
  20. Grassl H (2011) Climate change challenges. Survey 32:319–328. doi: 10.1007/s10712-011-9129-z Google Scholar
  21. Gray WM (2009) Climate change: driven by the ocean—not humans. The Steamboat Institute Conference, Steamboat Springs, Colorado, August 29, 2009.
  22. Hari RE, Livingstone DM, Siber R, Burkhardt-Holm P, Guttinger H (2006) Consequences of climate change for water temperature and brown trout populations in Alpine rivers and streams. Glob Chang Biol 12:10–26. doi: 10.1111/j.1365-2486.2005.001051.x CrossRefGoogle Scholar
  23. Hicks Pries C, Schuur EAG, Crummer KG (2012) Holocene carbon stocks and carbon accumulation rates altered in soils undergoing permafrost thaw. Ecosystems 15(1):162. doi: 10.1007/s10021-011-9500-4 CrossRefGoogle Scholar
  24. Humphreys WJ (1932) This cold, cold world. The Atlantic MonthlyGoogle Scholar
  25. IPCC (2007) Climate Change 2007, the Fourth Assessment Report (AR4) of the United Nations Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, CambridgeGoogle Scholar
  26. IPCC et al (1996) Climate Change 1995. In: Houghton JT (ed) The science of climate change. Cambridge University Press, CambridgeGoogle Scholar
  27. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Phys A 316:87–114CrossRefGoogle Scholar
  28. Kleinbaum DG, Kupper LL (1978) Applied regression analysis and other multivariable methods. Duxbury, BostonGoogle Scholar
  29. Knudsen MF, Seidenkrantz MS, Jacobsen BH, Kuijpers A (2011) Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nat Commun 1(2):178. doi: 10.1038/ncomms1186 CrossRefGoogle Scholar
  30. Kondratyev KY, Pokrovsky OM, Varotsos CA (1995) Atmospheric ozone trends and other factors of surface ultraviolet radiation variability. Environ Conserv 22:259–261Google Scholar
  31. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf W, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. PNAS 105:1786–1793. doi: 10.1073/pnas.0705414105 CrossRefGoogle Scholar
  32. Maraun D, Rust HW, Timmer J (2004) Tempting long-memory—on the interpretation of DFA results. Nonlinear Process Geophys 11:495–503CrossRefGoogle Scholar
  33. Markonis Y, Koutsoyiannis D (2013) Climatic variability over time scales spanning nine orders of magnitude: connecting Milankovitch Cycles with Hurst–Kolmogorov Dynamics. Surv Geophys 34:181–207. doi: 10.1007/s10712-012-9208-9 CrossRefGoogle Scholar
  34. Minobe S (1997) A 50–70 year climatic oscillation over the North Pacific and North America. Geophys Res Lett 24:683–686. doi: 10.1029/97GL00504 CrossRefGoogle Scholar
  35. Oosterbaan RJ (1994) Chapter 6 Frequency and regression analysis of hydrologic data. In: Ritzema HP (ed) Drainage principles and applications, second revised editionth edn, Publication 16. International Institute for Land Reclamation and Improvement (ILRI), Wageningen. ISBN 9070754339Google Scholar
  36. Peavoy D, Franzke C (2010) Bayesian analysis of rapid climate change during the last glacial using Greenland delta O-18 data. Clim Past 6:787–794. doi: 10.5194/cp-6-787-2010 CrossRefGoogle Scholar
  37. Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49(2):1685–1689CrossRefGoogle Scholar
  38. Reynolds GP, Zhang ZJ, Zhang XB (2002) Association of antipsychotic drug-induced weight gain with a polymorphism of the promoter region of the 5-HT2C receptor gene. Lancet 359:2086–2087CrossRefGoogle Scholar
  39. Riehl R, Fultz D (1957) Jet-stream and long waves in a steady rotating-dishpan experiment: structure of the circulation. Quart J Roy Meteorol Soc 83(356):215–231CrossRefGoogle Scholar
  40. Riehl R, Fultz D (1958) The general circulation in a steady rotating dishpan experiment. Quart J Roy Meteorol Soc 84:389–417CrossRefGoogle Scholar
  41. Sarlis NV, Skordas ES, Varotsos PA (2009) Heart rate variability in natural time and 1/f “noise”. EPL 87(1)Google Scholar
  42. Scafetta N (2010) Empirical evidence for a celestial origin of the climate oscillations and its implications. J Atmos & Solar-Ter Phys 72:951–970. doi: 10.1016/j.jastp.2010.04.015 CrossRefGoogle Scholar
  43. Scafetta N (2012) Testing an astronomically based decadal-scale empirical harmonic climate model versus the IPCC (2007) general circulation climate models. J Atmos & Solar-Ter Phys 80:124–137. doi: 10.1016/j.jastp.2011.12.005 CrossRefGoogle Scholar
  44. Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 60–70 years. Nature 367:723–726CrossRefGoogle Scholar
  45. Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559. doi: 10.1038/nature08031 CrossRefGoogle Scholar
  46. Studer S, Appenzeller C, Defila C (2005) Inter-annual variability and decadal trends in alpine spring phenology: a multivariate analysis approach. Clim Chang 73(3):395–414CrossRefGoogle Scholar
  47. Varotsos C (2005a) Airborne measurements of aerosol, ozone, and solar ultraviolet irradiance in the troposphere. J Geophys Res 110(D9):D09202. doi: 10.1029/2004JD005397 Google Scholar
  48. Varotsos C (2005b) Power-law correlations in column ozone over Antarctica. Int J Remote Sens 26(16):3333–3342CrossRefGoogle Scholar
  49. Varotsos CA (2013) The global signature of the ENSO and SST-like fields. Theor Appl Climatol. doi: 10.1007/s00704-012-0773-0 Google Scholar
  50. Varotsos C, Kirk-Davidoff D (2006) Long-memory processes in ozone and temperature variations at the region 60 degrees S-60 degrees N. Atmos Chem Phys 6:4093–4100CrossRefGoogle Scholar
  51. Varotsos PA, Sarlis NV, Skordas ES (2003a) Long-range correlations in the electric signals that precede rupture: further investigations. Phys Rev E. doi: 10.1103/PhysRevE.67.021109 Google Scholar
  52. Varotsos PA, Sarlis NV, Skordas ES (2003b) Attempt to distinguish electric signals of a dichotomous nature. Phys Rev E Stat Nonlin Soft Matter Phys 68(3 Pt 1), Epub 2003 Sep 23Google Scholar
  53. Varotsos C, Ondov J, Efstathiou M (2005) Scaling properties of air pollution in Athens, Greece and Baltimore, Maryland. Atmos Environ 39:4041–4047CrossRefGoogle Scholar
  54. Varotsos CA, Ondov JM, Cracknell AP, Efstathiou MN, Assimakopoulos MN (2006) Long-range persistence in global Aerosol Index dynamics. Int J Rem Sens 27(16):3593–3603CrossRefGoogle Scholar
  55. Varotsos C, Assimakopoulos MN, Efstathiou M (2007) Technical note: long-term memory effect in the atmospheric CO2 concentration at Mauna Loa. Atmos Chem Phys 7:629–634CrossRefGoogle Scholar
  56. Varotsos CA, Milinevsky G, Grytsai A, Efstathiou M, Tzanis C (2008) Scaling effect in planetary waves over Antarctica. Int J Rem Sens 29(9):2697–2704CrossRefGoogle Scholar
  57. Varotsos C, Efstathiou M, Tzanis C (2009a) Scaling behaviour of the global tropopause. Atmos Chem Phys 9:677–683CrossRefGoogle Scholar
  58. Varotsos PA, Sarlis NV, Skordas ES (2009b) Detrended fluctuation analysis of the magnetic and electric field variations that precede rupture. Chaos. doi: 10.1063/1.3130931
  59. Varotsos C, Efstathiou M, Tzanis C, Deligiorgi D (2012) On the limits of the air pollution predictability; the case of the surface ozone at Athens, Greece. Environ Sci Pollut Res 19(1):295–300. doi: 10.1007/s11356-011-0555-8 CrossRefGoogle Scholar
  60. Weber RO, Talkner P (2001) Spectra and correlations of climate data from days to decades. J Geophys Res 106:20131–20144CrossRefGoogle Scholar
  61. Wiener N (1950) Extrapolation, interpolation and smoothing of stationary time series. MIT Technology Press and John Wiley and Sons, New YorkGoogle Scholar
  62. Zhen-Shan L, Xian S (2007) Multi-scale analysis of global temperature changes and trend of a drop in temperature in the next 20 years. Meteor Atmos Phys 95(1-2):115–121CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Costas A. Varotsos
    • 1
    Email author
  • Christian L. E. Franzke
    • 2
  • Maria N. Efstathiou
    • 1
  • Andrei G. Degermendzhi
    • 3
  1. 1.Climate Research Group, Division of Environmental Physics and Meteorology, Faculty of PhysicsUniversity of AthensAthensGreece
  2. 2.British Antarctic Survey, Natural Environment Research CouncilCambridgeUK
  3. 3.Institute of Biophysics, SB RASRussian Academy of SciencesKrasnoyarskRussia

Personalised recommendations