Advertisement

Theoretical and Applied Climatology

, Volume 115, Issue 3–4, pp 685–691 | Cite as

Self-organized criticality of climate change

  • Zuhan Liu
  • Jianhua Xu
  • Kai Shi
Original Paper

Abstract

Self-organized criticality (SOC) of three climatic factors (average daily temperature, vapor pressure, and relative humidity) was studied by analyzing climate records from 1961 to 2011 in Yanqi County, northwest China. Firstly, we investigated the frequency-size distribution of three climatic factors and found that they were well approximated by power-law distribution, which suggested that climatic factor might be a manifestation of self-organized criticality. Furthermore, we introduced a new numerical sandpile model with decay coefficient to reveal inherent dynamic mechanism of climatic factor. Only changing the number value of decay coefficient of climatic factors, this model would give a good simulation of three climatic factors' statistical characteristics. This study showed that it was the self-organized criticality of the climate change that results in the temporal variation of climatic factors and the occurrence of large-scale climate change events triggered by SOC behavior of the minor climatic factors. So, we believed that SOC characteristics would have practical implications for climate prediction.

Keywords

Climatic Factor Decay Coefficient Sandpile Model Avalanche Size Bosten Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The research is supported by the National Basic Research Program of China (973 Program; no: 2010CB951003) and the Director Fund of the Key Lab of GIScience of the Education Ministry PRC.

References

  1. Abney S (2011) Statistical methods in language processing. WIREs Cogn Sci 2:315–322. doi: 10.1002/wcs.111 CrossRefGoogle Scholar
  2. Adamic LA, Huberman BA (2000) Power-law distribution of the World Wide Web. Science 287:2115. doi: 10.1126/science.287.5461.2115a CrossRefGoogle Scholar
  3. Aegerter CM (2003) A sandpile model for the distribution of rainfall? Physica A 319:1–10. doi: 10.1016/S0378-4371(02)01406-1 CrossRefGoogle Scholar
  4. Albert R, Jeong H, Barabási AL (1999) Diameter of the World-Wide Web. Nature 401:130–131. doi: 10.1038/43601 CrossRefGoogle Scholar
  5. Andrade RFS, Schellnhuber HJ, Claussen M (1998) Analysis of rainfall records: possible relation to self-organized criticality. Physica A 254:557–568. doi: 10.1016/S0378-4371(98)00057-0 CrossRefGoogle Scholar
  6. Atzori L, Aste N, Isola M (2006) Estimation of multifractal parameters in traffic measurement: an accuracy-based real-time approach. Comput Commun 29:1879–1888. doi: 10.1016/j.comcom.2005.10.024 CrossRefGoogle Scholar
  7. Bak P, Paczuski M (1993) Why nature is complex. Phys World 6:39–43Google Scholar
  8. Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of 1/f noise. Phys Rev Lett 59:381–384. doi: 10.1103/PhysRevLett.59.381 CrossRefGoogle Scholar
  9. Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38:364–374. doi: 10.1103/PhysRevA.38.364 CrossRefGoogle Scholar
  10. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512. doi: 10.1126/science.286.5439.509 CrossRefGoogle Scholar
  11. Boffetta G, Carbone V, Giuliani P, Veltri P, Vulpiani A (1999) Power laws in solar flares: self-organized criticality or turbulence? Phys Rev Lett 83:4662–4665. doi: 10.1103/PhysRevLett.83.4662 CrossRefGoogle Scholar
  12. Bornholdt S, Ebel H (2001) World Wide Web scaling exponent from Simon's 1955 model. Phys Rev E 64:035104(R). doi: 10.1103/PhysRevE.64.035104 CrossRefGoogle Scholar
  13. Bunde A, Eichner JF, Havlin S, Koscielny-Bunde E, Schellnhuber HJ, Vyushin D (2004) Comment on “Scaling of atmosphere and ocean temperature correlations in observations and climate models”. Phys Rev Lett 9:039801. doi: 10.1103/PhysRevLett.92.039801 CrossRefGoogle Scholar
  14. Carlson JM, Langer JS (1989) Mechanical model of an earthquake fault. Phys Rev A 40:6470–6484. doi: 10.1103/PhysRevA.40.6470 CrossRefGoogle Scholar
  15. Chessa A, Marinari E, Vespignani A (1998) Energy constrained sandpile models. Phys Rev Lett 80:4217–4220. doi: 10.1103/PhysRevLett.80.4217 CrossRefGoogle Scholar
  16. Chen X, Lin GX, Fu ZT (2007) Long-range correlations in daily relative humidity fluctuations: a new index to characterize the climate regions over China. Geophys Res Lett 34, L07804. doi: 10.1029/2006GL027755 Google Scholar
  17. Christensen K, Corral A, Frette V, Feder J, Torstein J (1996) Tracer dispersion in a self-organized critical system. Phys Rev Lett 77:107–110. doi: 10.1103/PhysRevLett.77.107 CrossRefGoogle Scholar
  18. Cronise RJ, Noever DA, Brittain A (1996) Self-organized criticality in closed ecosystems: carbon dioxide fluctuations in Biosphere 2. Int J Climatol 16:597–602. doi: 10.1002/(SICI)1097-0088(199605) CrossRefGoogle Scholar
  19. Drossel B (2000) Scaling behavior of the Abelian sandpile model. Phys Rev E 61:R2168–R2171. doi: 10.1103/PhysRevE.61.R2168 CrossRefGoogle Scholar
  20. Drossel B, Schwabl F (1992) Self-organized critical forest-fire model. Phys Rev Lett 69:1629–1992. doi: 10.1103/PhysRevLett.69.1629 CrossRefGoogle Scholar
  21. Feldstein SB (2000) The timescale, power spectra, and climate noise properties of teleconnection patterns. J Climate 13:4430–4440. doi: 10.1175/1520-0442(2000)013<4430:TTPSAC>2.0.CO;2 CrossRefGoogle Scholar
  22. Grassberger P, Kantz H (1991) On a forest fire model with supposed self-organized criticality. J Stat Phys 63:685–700. doi: 10.1007/BF01029205 CrossRefGoogle Scholar
  23. Govindan RB, Vjushin D, Brenner S, Bunde A (2001) Long-range correlations and trends in global climate models: comparison with real data. Physica A 294:239–248. doi: 10.1016/S0378-4371(01)00110-8 CrossRefGoogle Scholar
  24. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. B Seismol Soc Am 34:185–188Google Scholar
  25. Hergarten S, Neugebauer HJ (1998) Self-organized criticality in a landslide model. Geophys Res Lett 25:801–804. doi: 10.1029/98GL50419 CrossRefGoogle Scholar
  26. Huberman BA, Adamic LA (1999) Internet: growth dynamics of the World-Wide Web. Nature 401:31. doi: 10.1038/43604 CrossRefGoogle Scholar
  27. Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296. doi: 10.1029/97RG00426 CrossRefGoogle Scholar
  28. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabás AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654. doi: 10.1038/35036627 CrossRefGoogle Scholar
  29. Kim TM, Park PJ (2011) Advances in analysis of transcriptional regulatory networks. WIREs Syst Biol Med 3:21–35. doi: 10.1002/wsbm.105 CrossRefGoogle Scholar
  30. Lichtenegger K, Schappacher W (2011) A carbon-cycle-based stochastic cellular automata climate model. Int J Mod Phy C 22:607–621. doi: 10.1142/S0129183111016488 CrossRefGoogle Scholar
  31. Lu ET, Hamilton RJ (1991) Avalanches and the distribution of solar flares. Astrophys J 380:L89–L92CrossRefGoogle Scholar
  32. Malamud BD, Turcotte D (1999) Self-organized criticality applied to natural hazards. Nat Hazards 20:93–116. doi: 10.1023/A:1008014000515 CrossRefGoogle Scholar
  33. Manna SS (1991) Two-state model of self-organized criticality. J Phys A: Math Gen 24:L363–L369. doi: 10.1088/0305-4470/24/7/009 CrossRefGoogle Scholar
  34. Mann ME, Lees JM (1996) Robust estimation of background noise and signal detection in climatic time series. Climatic Change 33:409–445. doi: 10.1007/BF00142586 CrossRefGoogle Scholar
  35. Miyazima S, Lee Y, Nagamine T, Miyajima H (2000) Power-law distribution of family names in Japanese societies. Physica A 278:282–288. doi: 10.1016/S0378-4371(99)00546-4 CrossRefGoogle Scholar
  36. Suki B, Barabási AL, Hantos Z, Peták F, Stanley HE (1994) Avalanches and power-law behavior in lung inflation. Nature 368:615–618. doi: 10.1038/368615a0 CrossRefGoogle Scholar
  37. Olami Z, Feder HJS, Christensen K (1992) Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys Rev Lett 68:1244–1247. doi: 10.1103/PhysRevLett.68.1244 CrossRefGoogle Scholar
  38. Paczuski M, Bak P (1997) Theory of the one-dimensional forest-fire model. Phys Rev E 48:R3214–R3216. doi: 10.1103/PhysRevE.48.R3214 CrossRefGoogle Scholar
  39. Peters O, Christensen K (2006) Rain viewed as relaxational events. J Hydrol 328:46–55. doi: 10.1016/j.jhydrol.2005.11.045 CrossRefGoogle Scholar
  40. Peters O, Neelin JD (2006) Critical phenomena in atmospheric precipitation. Nat Phys 2:393–396. doi: 10.1038/nphys314 CrossRefGoogle Scholar
  41. Pinho STR, Andrade RFS (1998) An Abelian model for rainfall. Physica A 255:483–495. doi: 10.1016/S0378-4371(98)00077-6 CrossRefGoogle Scholar
  42. Shang PJ, Lu YB, Kamae S (2008) Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis. Chaos Soliton Fract 36:82–90. doi: 10.1016/j.chaos.2006.06.019 CrossRefGoogle Scholar
  43. Shi K, Liu CQ, Ai NS, Zhang XH (2008) Using three methods to investigate time scaling properties in air pollution indexes time series. Nonlinear Anal-Real 9:693–707. doi: 10.1016/j.nonrwa.2007.06.003 CrossRefGoogle Scholar
  44. Shi K, Liu CQ (2009) Self-organized criticality of air pollution. Atmos Environ 43:3301–3304. doi: 10.1016/j.atmosenv.2009.04.013 CrossRefGoogle Scholar
  45. Song WG, Fan WC, Wang BH, Zhou JJ (2001) Self-organized criticality of forest fire in China. Ecol Model 145:61–68. doi: 10.1016/S0304-3800(01)00383-0 CrossRefGoogle Scholar
  46. Tsonis AA, Roebber PJ, Elsner JB (1999) Long-range correlations in the extra tropical atmospheric circulation: origins and implications. J Climate 12:1534–1541. doi: 10.1175/1520-0442(1999)012<1534:LRCITE>2.0.CO;2 CrossRefGoogle Scholar
  47. Turcotte DL, Malamud BD (2004) Landslides, forest fires, and earthquakes: examples of self-organized critical behavior. Physica A 340:580–589. doi: 10.1016/j.physa.2004.05.009 CrossRefGoogle Scholar
  48. Vespignani A, Dickman R, Munoz MA, Zapperi S (2000) Absorbing-state phase transitions in fixed-energy sandpiles. Phys Rev E 62:4564–4582. doi: 10.1103/PhysRevE.62.4564 CrossRefGoogle Scholar
  49. Vieira MS (2004) Are avalanches in sandpiles a chaotic phenomenon? Physica A 340:559–565. doi: 10.1016/j.physa.2004.05.006 CrossRefGoogle Scholar
  50. Wheatland MS (2000) Flare frequency-size distributions for individual active regions. Astrophys J 532:1209–1214. doi: 10.1086/308605 CrossRefGoogle Scholar
  51. Xu JH, Chen YN, Li WH, Ji MH, Dong S (2009) The complex nonlinear systems with fractal as well as chaotic dynamics of annual runoff processes in the three headwaters of the Tarim River. J Geogr Sci 19(1):25-35. doi: 10.1007/s11442-009-0025-0 Google Scholar
  52. Xu JH, Li WH, Ji MH, Lu F, Dong S (2010) A comprehensive approach to characterization of the nonlinearity of runoff in the headwaters of the Tarim River, western China. Hydrol Process 24(2):136-146. doi: 10.1002/hyp.7484 Google Scholar
  53. Yu ZC (2006) Power laws governing hydrology and carbon dynamics in northern peat lands. Global Planet Change 53:169–175. doi: 10.1016/j.gloplacha.2006.03.013 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.The Research Center for East–west Cooperation in ChinaEast China Normal UniversityShanghaiChina
  2. 2.College of Biology and Environmental SciencesJishou UniversityJishouChina

Personalised recommendations