Theoretical and Applied Climatology

, Volume 114, Issue 1–2, pp 253–269 | Cite as

Description and validation of a two-step analogue/regression downscaling method

  • J. RibalayguaEmail author
  • L. Torres
  • J. Pórtoles
  • R. Monjo
  • E. Gaitán
  • M. R. Pino
Original Paper


This study describes a two-step analogue statistical downscaling method for daily temperature and precipitation. The first step is an analogue approach: the “n” days most similar to the day to be downscaled are selected. In the second step, a multiple regression analysis using the “n” most analogous days is performed for temperature, whereas for precipitation, the probability distribution of the “n” analogous days is used to define the amount of precipitation. Verification of this method has been carried out for the Spanish Iberian Peninsula and the Balearic Islands. Results show good performance for temperature (BIAS close to 0.1 °C and mean absolute errors around 1.9 °C) and an acceptable skill for precipitation (reasonably low BIAS except in autumn with a mean of −18 %, mean absolute error lower than for a reference simulation, i.e. persistence and a well-simulated probability distribution according to two non-parametric tests of similarity).


Statistical Downscaling Mean Absolute Error Balearic Island ERA40 Reanalysis Analogue Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was partly supported by the Ministry of Science and Innovation funding under the GENCEI project (contract no. CGL2005-06600-C03-03, 2006–2008). The authors thank the Spanish Meteorology Agency (Agencia Estatal de Meteorología – AEMET) for providing the observed data set and the European Centre for Medium-Range Weather Forecasts (ECMWF) for offering the ERA-40 reanalysis data ( We also thank Clare Goodess (Climate Research Unit, East Anglia University) for her help.


  1. Abaurrea J, Asín J (2005) Forecasting local daily precipitation patterns in a climate change scenario. Clim Res 28:183–197CrossRefGoogle Scholar
  2. Balzer K (1991) Recent improvements in medium-range local weather forecasting in the Deutscher Wetterdienst. In: Lectures of the WMO training workshop on the interpretation of NWP products in terms of local weather phenomena and their verification, Wageningen, pp. 225–229Google Scholar
  3. Brands S, Herrera S, San-Martin D, Gutierrez JM (2011) Validation of the ENSEMBLES global climate models over southwestern Europe using probability density functions, from a downscaling perspective. Clim Res 48(2–3):145–161. doi: f10.3354/cr00995g Google Scholar
  4. Brunet M, Aguilar E, Saladíe O, Sigró J, López D (2001) The Spanish temperature series. Time variations and trends over the last 150 years. Geophysical Research Abstracts 3:GRA3 5333 76Google Scholar
  5. Brunet M, Casado MJ, De Castro M, Galán P, López JA, Martín JM, Pastor A, Petisco E, Ramos P, Ribalaygua J, Rodríguez E, Sanz I, Torres L (2008) Generación de escenarios regionalizados de cambio climático para España. Centro de Publicaciones, Secretaría General Técnica. Ministerio de Medio Ambiente y Medio Rural y Marino. Spanish Meteorology Agency (AEMET), MadridGoogle Scholar
  6. Bürguer G (1996) Expanded downscaling for generating local weather scenarios. Clim Res 7:118–28Google Scholar
  7. Capel-Molina JJ (2000) El Clima de la Península Ibérica. Ed. Ariel, BarcelonaGoogle Scholar
  8. Chastagnaret G, Gil-Olcina A (2006) Riesgo de inundaciones en el Mediterráneo Occidental. Collection de la Casa de Velásquez 95:115–130, ISSN 1132–734Google Scholar
  9. Christensen JH, Carter TR, Rummukainen M et al (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81:1–6CrossRefGoogle Scholar
  10. Déqué M, Piedelievre JP (1995) High resolution climate simulations over Europe. Clim Dyn 11:321–339CrossRefGoogle Scholar
  11. Enke W, Spekat A (1997) Downscaling climate model outputs into local and regional weather elements by classification and regression. Clim Res 8:195–207CrossRefGoogle Scholar
  12. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Clim 27:1547–1578CrossRefGoogle Scholar
  13. Gibergans Baguena J, Llasat MC, Martin Vide J (1995) Precipitaciones extremas en el área mediterránea. Riegos y drenajes XXI 11:27–34, ISSN 0213–3660Google Scholar
  14. Giorgi F, Shields Brodeur C, Bates GT (1994) Regional climate change scenarios over the United States produced with a nested regional climate model. J Climate 7:375–399CrossRefGoogle Scholar
  15. Giorgi F, Francisco R (2001) Uncertainties in the prediction of regional climate change. Global Change and Protected Areas 9:127–139CrossRefGoogle Scholar
  16. Goodess CM, Anagnostopoulou C, Bárdossy A, Frei C, Harpham C, Haylock MR, Hundecha Y, Maheras P, Ribalaygua J, Schmidli J, Schmith T, Tolika K, Tomozeiu R, Wilby RL (2011) An intercomparison of statistical downscaling methods for Europe and European regions—assessing their performance with respect to extreme temperature and precipitation events. Climatic Research Unit Research Publication (CRURP) N.11, University of East Anglia, UK.
  17. Hamill TM (1999) Hypothesis tests for evaluating numerical precipitation forecasts. Wea Forecasting 14:155–167CrossRefGoogle Scholar
  18. Hersbach H (2000) Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea Forecasting 15:559–570CrossRefGoogle Scholar
  19. Herrmann JM (2008) Relevance of ERA40 dynamical downscaling for modeling deep convection in the Mediterranean Sea. Geophys Res Let 35:L04607CrossRefGoogle Scholar
  20. Hewitson BC, Crane RG (eds) (1994) Neural nets applications in geography. Kluwer Academic, DordrechtGoogle Scholar
  21. Holton J (2004) An introduction to dynamic meteorology, 4th edn. Academic, New York, p 535 ppGoogle Scholar
  22. Huebener H, Cubasch U, Langematz U, Spangehl T, Niehörster F, Fast I, Kunze M (2007) Ensemble climate simulations using a fully coupled ocean–troposphere–stratosphere general circulation model. Phil Trans Roy Soc A 365:2089–210. doi: 10.1098/rsta.2007.2078 CrossRefGoogle Scholar
  23. Hu H, Oglesby RJ, Marshall S (2005) The simulation of moisture processes in climate models and climate sensitivity. J Climate 18:2172–2193. doi: 10.1175/JCLI3384.1 CrossRefGoogle Scholar
  24. Imbert A, Benestad R (2005) An improvement of analog model strategy for more reliable local climate change scenarios. Theor Appl Climatol 82:245–255. doi: 10.1007/s00704-005-0133-4 CrossRefGoogle Scholar
  25. Jansa A, Genoves A, Garcia-Moya JA (2000) Western Mediterranean cyclones and heavy rain. Part 1: Numerical experiment concerning the Piedmont flood case. Met Apps 7:323–333CrossRefGoogle Scholar
  26. John VO, Soden BJ (2007) Temperature and humidity biases in global climate models and their impact on climate feedbacks. Geoph Res Let 34:L18704. doi: 10.1029/2007GL030429 CrossRefGoogle Scholar
  27. Jones RG, Murphy JM, Noguer M, Keen B (1997) Simulation of climate change over Europe using a nested regional-climate model. II: Comparison of driving and regional model responses to a doubling of carbon dioxide. Q J R Meteorol Soc 123:265–292Google Scholar
  28. Kruizinga S, Murphy AH (1983) Use of an analogue procedure to formulate objective probabilistic temperature forecasts in the Netherlands. Mon Wea Rev 111:2245–2254CrossRefGoogle Scholar
  29. Lazier JR, Pickart RS, Rhines PB (2001) Deep convection. In: Lazier JR (ed) Ocean circulation and climate. Observing and modelling the global ocean. Academic Press, LondonGoogle Scholar
  30. Lopez-Bustins JA, Martin-Vide J, Sanchez-Lorenzo A (2008) Iberia winter rainfall trends based upon changes in teleconnection and circulation patterns. Glob Planet Change 63:171–176CrossRefGoogle Scholar
  31. Marsaglia G, Tsang WW, Wang J (2003) Evaluating Kolmogorov’s distribution. J Stat Softw 8:18Google Scholar
  32. Martin E, Timbal B, Brun E (1997) Downscaling of general circulation model outputs simulation of the snow climatology of the French Alps and sensitivity to climate change. Clim Dyn 13:45–56CrossRefGoogle Scholar
  33. Martín-Vide J (2004) Spatial distribution of a daily precipitation concentration index in peninsular Spain. Int J Clim 24:959–971CrossRefGoogle Scholar
  34. Matulla C, Zhang X, Wang XL, Wang J, Zorita JE, Wagner S, von Storch H (2008) Influence of similarity measures on the performance of the analog method for downscaling daily precipitation. Clim Dyn 30:133–144CrossRefGoogle Scholar
  35. McBride JL, Ebert EE (2000) Verification of quantitative precipitation forecasts from operational numerical weather prediction models over Australia. Wea Forecasting 15:103–121CrossRefGoogle Scholar
  36. Mearns LO (1997) On the statistical evaluation of climate model experiments—comment. Clim Change 37:443–448CrossRefGoogle Scholar
  37. Murphy J (1999) An evaluation of statistical and dynamical techniques for downscaling local climate. J Climate 12:2256–2284CrossRefGoogle Scholar
  38. R Development Core Team (2010): R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. Accessed 6 July 2011
  39. Räisänen J (2007) How reliable are climate models? Tellus A 59:2–29. doi: 10.1111/j.1600-0870.2006.00211.x CrossRefGoogle Scholar
  40. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Climate 19:3771–3791CrossRefGoogle Scholar
  41. Scholz FW, Stephens MA (1987) K-sample Anderson-Darling tests. J Am Stat Assoc 399:918–924Google Scholar
  42. Stauffer DR, Seaman NL (1990) Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon Wea Rev 118:1250–1277CrossRefGoogle Scholar
  43. Sekhon JS (2010) Matching: multivariate and propensity score matching with balance optimization. R package version 4.7-11. Accessed 6 July 2011
  44. van der Linden P, Mitchell JFB (eds) 2009: ENSEMBLES: Climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, UK, 160 pp. (see p 68). Accessed 10 Feb 2012
  45. von Storch V, Zorita E, Cubasch U (1993) Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime. Am Meteorol Soc 6:1161–1171Google Scholar
  46. von Storch V (1994) Inconsistencies at the interface of climate impact studies and global climate research. Max-Planck-Institut fur Meteorologie, Report no. 122, HamburgGoogle Scholar
  47. Weigel AP, Liniger MA, Appenzelle C (2006) The discrete Brier and ranked probability skill scores. Mon Weather Rev 118:135–124Google Scholar
  48. Wilby RL, Wigley TML (1997) Downscaling general circulation model output: a review of methods and limitations. Prog Phys Geogr 21:530–548CrossRefGoogle Scholar
  49. Wilby RL, Wedgbrow CS, Fox HR (2004) Seasonal predictability of the summer hydrometeorology of the River Thames, UK. J Hydrol 295:1–16CrossRefGoogle Scholar
  50. Wilks DS (2005) Statistical methods in the atmospheric sciences, Chapter 7. Academic Press, San DiegoGoogle Scholar
  51. Woodcock F (1980) On the use of analogues to improve regression forecasts. Mon Wea Rev 108:292–297CrossRefGoogle Scholar
  52. Yu S, Eder B, Dennis R, Chu S-H, Schwartz SE (2006) New unbiased symmetric metrics for evaluation of air quality models. Atmos Sci Let 7:26–34CrossRefGoogle Scholar
  53. Zorita E, Hughes J, Lettenmaier D, Storch H (1993) Stochastic downscaling of regional circulation patterns for climate model diagnosis and estimation of local precipitation. Max-Planck-Institut fur Meteorologie, Report no. 109, HamburgGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • J. Ribalaygua
    • 1
    Email author
  • L. Torres
    • 1
  • J. Pórtoles
    • 1
  • R. Monjo
    • 1
  • E. Gaitán
    • 1
  • M. R. Pino
    • 2
  1. 1.Fundación para la Investigación del ClimaMadridSpain
  2. 2.Instituto de Medio Ambiente, Facultad de Ciencias de la SaludUniversidad de San JorgeZaragozaSpain

Personalised recommendations