Theoretical and Applied Climatology

, Volume 114, Issue 1–2, pp 213–226 | Cite as

Basic analysis of climate and urban bioclimate of Dar es Salaam, Tanzania

Original Paper


Better understanding of urban microclimate and bioclimate of any city is imperative today when the world is constrained by both urbanisation and global climate change. Urbanisation generally triggers changes in land cover and hence influencing the urban local climate. Dar es Salaam city in Tanzania is one of the fast growing cities. Assessment of its urban climate and the human biometeorological conditions was done using the easily available synoptic meteorological data covering the period 2001–2011. In particular, the physiologically equivalent temperature (PET) was calculated using the RayMan software and results reveal that the afternoon period from December to February (DJF season) is relatively the most thermal stressful period to human beings in Dar es Salaam where PET values of above 35 °C were found. Additionally, the diurnal cycle of the individual meteorological elements that influence the PET index were analysed and found that air temperature of 30–35 °C dominate the afternoon period from 12:00 to 15:00 hours local standard time at about 60 % of occurrence. The current results, though considered as preliminary to the ongoing urban climate study in the city, provide an insight on how urban climate research is of significant importance in providing useful climatic information for ensuring quality of life and wellbeing of city dwellers.


  1. Abebe FK (2011) Modelling informal settlement growth in Dar es Salaam Tanzania. Dissertation, University of TwenteGoogle Scholar
  2. Adebayo YR (1991) Day-time effects of urbanization on relative humidity and vapour pressure in a tropical city. Theor Appl Climatol 43:17–30CrossRefGoogle Scholar
  3. Akinbode OM, Eludoyin AO, Fashae OA (2008) Temperature and relative humidity distributions in a medium-size administrative town in southwest Nigeria. J Env Managt 87:95–105CrossRefGoogle Scholar
  4. Andrade T, Nery J, Freire T, Katzschner L, Fortuna D (2004) Thermal comfort conditions for a tropical city, Salvador–Brazil. The 21st Conference on Passive and Low Energy Architecture. Eindhoven, The Netherlands. 19–22 September 2004Google Scholar
  5. Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26CrossRefGoogle Scholar
  6. Bargman DJ (1970) The climate of Dar es Salaam. Tanzania Notes and Records 71:55–64Google Scholar
  7. Barradas VL (1991) Air temperature and humidity and human comfort index of some city parks of Mexico city. Int J Biometeorol 35:24–28CrossRefGoogle Scholar
  8. Blazejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2012) Comparison of UTCI to selected thermal indices. Int J Biometeorol 56:515–535, Special issue (UTCI)CrossRefGoogle Scholar
  9. Bruse M (1999) The influences of local environmental design on microclimate, PhD Thesis, University of Bochum, Bochum, Germany (in German)Google Scholar
  10. Bruse M. 2004. ENVI-met 3.0: Updated model overview. Accessed 30 January 2012
  11. Çalışkan O, Çiçek Çİ, Matzarakis A (2012) The climate and bioclimate of Bursa (Turkey) from the perspective of tourism. Theor Appl Climatol 107:417–425. doi:10.1007/s00704-011-0489-6 CrossRefGoogle Scholar
  12. Chen L, Ng E (2011) Quantitative urban climate mapping based on a geographical database: a simulation approach using Hong Kong as a case study. Intl J Appl Eart Observ Geoinf 13:586–594CrossRefGoogle Scholar
  13. Citymayors statistics (2011) The world’s fastest growing cities and urban areas from 2006 to 2020. Accessed 30 October 2011
  14. Cui X (2005) Interactions between climate and land cover changes on the Tibetan Plateau. Thesis, Max-Planck-Institut für MeteorologieGoogle Scholar
  15. DCC (2004) City profile for Dar Es Salaam, United Republic of TanzaniaGoogle Scholar
  16. Deb C, Ramachandraiah A (2010) The significance of physiological equivalent temperature (PET) in outdoor thermal comfort studies. Intl J Eng Sc Techno 2(7):2825–2828Google Scholar
  17. Douglas I, Alam K, Maghenda M, Mcdonnell Y, Mclean L, Campbell J (2008) Unjust waters: climate change, flooding and the urban poor in Africa. Environ Urbaniz 20:187–205CrossRefGoogle Scholar
  18. Dubi, AM (2001) Frequency and long-term distribution of coastal winds of Tanzania. In: Richmond M. D. and J. Francis (eds). Marine science development in Tanzania and Eastern Africa. Proceedings of the 20th Anniversary Conference on Advances in Marine Science in Tanzania, 28 June–1 July 1999, Zanzibar, Tanzania. IMS/WIOMSA. p. 131–144Google Scholar
  19. Eludoyin OM, Adelekan IO (2012) The physiologic climate of Nigeria. Int J Biometeorol. doi:10.1007/s00484-012-0549-3
  20. Emmanuel R (2005) Thermal comfort implications of urbanization in a warm-humid city: the Colombo Metropolitan Region (CMR), Sri Lanka. Build Environ 40:1591–1601CrossRefGoogle Scholar
  21. Emmanuel R, Johansson E (2006) Influence of urban morphology and sea breeze on hot humid microclimate: the case of Colombo. Sri Lanka Clim Res 30:189–200CrossRefGoogle Scholar
  22. Emmanuel R, Rosenlund H, Johansson E (2007) Urban shading—a design option for the tropics? A study in Colombo, Sri Lanka. Int J Climatol 27:1995–2004CrossRefGoogle Scholar
  23. Fanger PO (1972) Thermal comfort. Mc Graw Hill, New YorkGoogle Scholar
  24. Farajzadeh H, Matzarakis A (2012) Evaluation of thermal comfort conditions in Ourmieh Lake, Iran. Theor Appl Climatol 107:451–459. doi:10.1007/s00704-011-0492-y CrossRefGoogle Scholar
  25. Gulyás Á, Matzarakis A (2009) Seasonal and spatial distribution of physiologically equivalent temperature (PET) index in Hungary. Quart J Hungarian Met Serv 113(3):221–231Google Scholar
  26. Hill A, Lindner C (2010) Modelling informal urban growth under rapid urbanisation: A CA-based land-use simulation model for the city of Dar es Salaam, Tanzania. Thesis, TU Dortmund UniversityGoogle Scholar
  27. Höppe PR (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75CrossRefGoogle Scholar
  28. Howorth C, Covery I, O’keefe P (2001) Gardening to reduce hazard: urban agriculture in Tanzania. Land Degrad Develop 12:285–291CrossRefGoogle Scholar
  29. Jansson C (2006) Urban Microclimate and Surface Hydrometeorological Processes. Thesis, KTH StockholmGoogle Scholar
  30. Jauregui E (1991) The human climate of tropical cities: an overview. Int J Biometeorol 35(151):160Google Scholar
  31. Jauregui E (2005) Possible impacts of urbanization on the thermal climate of some large cities in Mexico. Atmosfera 18(4):247–248Google Scholar
  32. Jendritzky G, De Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56(3):421–428. doi:10.1007/s00484-011-0513-7 CrossRefGoogle Scholar
  33. Johansson E (2006) Influence of urban geometry on outdoor thermal comfort in a hot dry climate: a study in Fez, Morocco. Building and Environ 41:1326–1338CrossRefGoogle Scholar
  34. Johansson E, Emmanuel R (2006) The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. Int J Biometeorol 51:119–133. doi:10.1007/s00484-006-0047-6 CrossRefGoogle Scholar
  35. Jonsson P, Bennet C, Eliasson I, Lindgren ES (2004) Suspended particulate matter and its relations to the urban climate in Dar es Salaam. Tanz Atmos Environ 38:4175–4181CrossRefGoogle Scholar
  36. Jonsson P, Eliasson I, Holmer B, Grimmond CBS (2006) Longwave incoming radiation in the tropics: results from field work in three African cities. Theor Appl Climatol 85:185–201CrossRefGoogle Scholar
  37. Lin TP (2009) Thermal perception, adaptation and attendance in a public square in hot and humid regions. Building Environ 44:2017–2026CrossRefGoogle Scholar
  38. Lin TP, Matzarakis A (2008) Tourism climate and thermal comfort in sun moon lake, Taiwan. Int J Biometeorol 52:281–290CrossRefGoogle Scholar
  39. Lin TP, Matzarakis A, Hwang RL (2010) Shading effect on long-term outdoor thermal comfort. Build Environ 45:213–221CrossRefGoogle Scholar
  40. Lindberg F, Holmer B, Thorsson S (2008) SOLWEIG 1.0—modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int J Biometeorol 52:697–713. doi:10.1007/s00484-008-0162-7 CrossRefGoogle Scholar
  41. Lopes A, Lopes S, Matzarakis A, Alcoforado MJ (2011) The influence of the summer sea breeze on thermal comfort in Funchal (Madeira). A contribution to tourism and urban planning. Meteor Zeitsch 20(5):553–564CrossRefGoogle Scholar
  42. Makokha GL (1998) Variations of the effective temperature index (ET) in Kenya. Geo Journal 44(4):337–343Google Scholar
  43. Makokha GL, Shisanya CA (2010a) Temperature cooling and warming rates in three different built environments within Nairobi city, Kenya. Advances Met. doi:10.1155/2010/686214
  44. Makokha GL, Shisanya CA (2010b) Trends in mean annual minimum and maximum near surface temperature in Nairobi city, Kenya. Advances Met. doi:10.1155/2010/676041
  45. Matzarakis A, Rutz F, Mayer H (2010) Modeling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54:131–139CrossRefGoogle Scholar
  46. Matzarakis A, Rutz F, Mayer H (2007) Modeling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334CrossRefGoogle Scholar
  47. Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84CrossRefGoogle Scholar
  48. Mayer H, Höppe PR (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49CrossRefGoogle Scholar
  49. NBS (2006) Analytical report. Accessed 30 December 2011
  50. NBS (2011) Tanzania in Figures 2010. National Bureau of Statistics, Dar es Salaam. Accessed 30 December 2011
  51. Nieuwolt S (1973) Breezes along the Tanzanian coast. Arch Met Geoph Biokl Ser B 21:189–206CrossRefGoogle Scholar
  52. Omonijo AG, Matzarakis A, Oguntoke O, Adeofun CO (2011) Effects of thermal environment on the temporal, spatial and seasonal occurrence of measles in Ondo state, Nigeria. Int J Biometeorol. doi:10.1007/s00484-011-0492-8
  53. Orosa JA (2009) Research on general thermal comfort models. Eur J Sc Res 27(2):217–227Google Scholar
  54. Owen TW, Carlson TN, Gillies RR (1998) An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. Intl J Rem Sens 19(9):1663–1681. doi:10.1080/014311698215171 CrossRefGoogle Scholar
  55. Pauchard A, Aguayo M, Peña E, Urrutia R (2006) Multiple effects of urbanization on the biodiversity of developing countries: the case of a fast-growing metropolitan area (Concepción, Chile). Biol Conserv 127:272–281CrossRefGoogle Scholar
  56. Roth M (2007) Review of urban climate research in (sub)tropical regions. Int J Climatol 27:1859–1873CrossRefGoogle Scholar
  57. Seto KC, Fragkias M, Güneralp B, Reilly MK (2011) A meta-analysis of global urban land expansion. PLoS One 6(8):e23777. doi:10.1371/journal.pone.0023777 CrossRefGoogle Scholar
  58. Staiger H, Laschewski G, Grätz A (2012) The perceived temperature—a versatile index for the assessment of the human thermal environment. Part A: scientific basics. Int J Biometeorol 56:165–176. doi:10.1007/s00484-011-0409-6 CrossRefGoogle Scholar
  59. Stewart ID, Oke TR (2010) Thermal differentiation of local climate zones using temperature observations from urban and rural field sites. In: Preprints, 9th Symposium, on Urban Environment, August 2–6, Keystone, COGoogle Scholar
  60. Trusilova K (2006) Urbanization impacts on the climate in Europe. Thesis, Max-Planck-Institut für MeteorologieGoogle Scholar
  61. UN-HABITAT (2008) State of the world’s cities 2008/2009. Harmonious cities. London: Sterling, VA: EarthscanGoogle Scholar
  62. UN-HABITAT (2010) Citywide action plan for upgrading unplanned and unserviced settlements in Dar es Salaam. Nairobi: UN-HABITAT. Accessed 26 January 2012
  63. Zaninovic K, Matzarakis A (2009) The biometeorological leaflet as a means conveying climatological information to tourists and the tourism industry. Int J Biometeorol 53:369–374CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Professur für Meteorologie und KlimatologieAlbert-Ludwigs University FreiburgFreiburg im BreisgauGermany

Personalised recommendations