Theoretical and Applied Climatology

, Volume 113, Issue 3–4, pp 511–527 | Cite as

Urban boundary layer analysis in the complex coastal terrain of Bilbao using Enviro-HIRLAM

  • I. González-Aparicio
  • J. Hidalgo
  • A. Baklanov
  • U. Korsholm
  • R. Nuterman
  • A. Mahura
  • O. Santa-Coloma
Original Paper


This study analyses the atmospheric boundary layer over the Bilbao metropolitan area during summer (13–18 Jul 2009) and winter (20–29 Jan 2010) episodes using the Environment–High Resolution Limited Area Model (Enviro-HIRLAM) coupled with the building effect parameterisation (BEP). The main objectives of this study are: to evaluate the performance of the model to simulate the land–sea breezes over this complex terrain; to assess the simulations with the integration of an urban parameterisation in Enviro-HIRLAM and finally; and to analyse the urban–atmosphere interactions. Even if the hydrostraticity of the model is a limitation to simulate atmospheric flows over complex terrain, sensibility tests demonstrate that 2.4 km is the optimal horizontal resolution over Bilbao that allows at the same time: to obtain satisfactory reproducibility of the large-scale processes and to explore the urban effects at local scale. During the summer episode, a typical regime of diurnal sea breeze from the NW-N-NE direction and nocturnal valley breezes from the SE direction are observed over Bilbao. The urban heat island (UHI) phenomenon is developed in the city centre expanding to the suburbs from 22 to 10 local time (LT), covering an area of 130 km2. The maximum UHI intensity, 1 °C, is reached at the end of the night (5 LT), and it is advected 12 km towards the sea by the land breezes. The urban boundary layer (UBL) height amplitude varies from 100 (night time) to 1,360 m (at 14 LT). During the winter episode, the land breeze dominates the atmospheric diffusion during the day and night time. The maximum UHI intensity, 1.7 °C, is observed at 01 LT. It is spread and remained over the city covering an area of 160 km2, with a vertical extension of 33 m. The UBL reaches 780 m height at 16 LT the following day.


Urban Heat Island Urban Surface Urban Effect Medium Size City Urban Heat Island Intensity 



Financial support for this work is gratefully acknowledged to the K-EGOKITZEN project and Tecnalia R&I and Iñaki Goenaga Technological Foundations and EU FP7 MEGAPOLI project (grant agreement No., 212520). The DMI CRAY-XT5 supercomputing facilities have been used extensively in this study as well as the DMI and ECMWF meteorological archives/data and the meteorological data provided by EUSKALMET. Thanks to the DMI Computer Department for helpful advice and technical support. Also, thanks to the CMM of DMI; Prof. Eigil Kaas and the group of the Geophysics Department (Niels Böhr Institute, University of Copenhagen) and to the urban climate group of CNRM-GAME (Météo-France & CNRS) for their constructive discussions and comments.


  1. Acero JA (2012) Urban Climate Modelling: development of urban climate evaluation methods for urban planning purposes. Ph.D. thesis, Faculty of Architecture, Urban and Landscape Planning, University KasselGoogle Scholar
  2. Allen L, Beevers S, Lindberg F, lamarino M, Kitiwiron N, Grimond GSB (2010) Global to city scale urban anthropogenic heat flux: model and variability. Sci Report 1–87Google Scholar
  3. Alonso M, Labajo J, Fidalgo M (2003) Characteristics of the urban heat island in the city of Salamanca, Spain. Atmósfera, pp. 137–148Google Scholar
  4. Areitio J, Ezcurra A, Herrero I (2001) Cloud to ground lighting characteristics in the Spanish Basque Country area during the period 1992–1996. J Atmos Solar-Terr Phys 63:1005–1015CrossRefGoogle Scholar
  5. Baklanov A, Korsholm U, Mahura A, Petersen C, Gross A (2008) ENVIRO-HIRLAM: on-line coupled modelling of urban meteorology and air pollution. Adv Sci Res 2:41–46CrossRefGoogle Scholar
  6. Bougeault P, Lacarrère P (1989) Parameterization of orography-induced turbulence in a mesosbeta-scale model. Mon Weather Rev 117:1872–1890CrossRefGoogle Scholar
  7. Caballero E (2004) Microclimas urbanos: la importancia de los materiales. En García Codrón JC et al (Eds) El clima entre el mar y la montaña. Publicaciones de la Asociación Española de Climatología. Serie A No.4: pp. 571–581Google Scholar
  8. Carreras C, Marín M, Vide JM, Moreno M, Sabí J (1990) Modificaciones térmicas en las ciudades. Avance sobre la Isla de Calor en Barcelona. Doc D’analisi Geofrafica 17:51–77Google Scholar
  9. CTE 2010 (2010) Constructive Elements Catalogue (CTE), Spanish GovernmentGoogle Scholar
  10. Cuxart J, Bougeault P, Redelsperger JL (2000) A multiscale turbulence scheme apt for LES and mesoscale modelling. Q J R Meteorol Soc 126:1–30CrossRefGoogle Scholar
  11. EPA report 2009 (2009) Development of gridded fields for advanced urban meteorological and air quality. Models, Environmental Protection AgencyGoogle Scholar
  12. Flaño P, Marín L, Suárez P, Cordero A (2008) La isla de calor en Las Palmas de Gran Canaria. Intensidad, distribución y factores condicionantes. ISSN 0212–9426. 47: 157–173Google Scholar
  13. Gangoiti G, Albizuri A, Alonso L, Navazo M, Matabuena M, Valdenebro V, García JA, Millán M (2006) Sub-continental transport mechanisms and pathways Turing two ozone episodes in Northern Spain. Atmos Chem Phys 6:1469–1484CrossRefGoogle Scholar
  14. Gavrilova Julia (2010) Possible modification of the Enviro-HIRLAM NWP model to include urbanization effects in Saint-PetersburgGoogle Scholar
  15. Goikoetxea (1990) El medio ambiente urbano en Donostia. Observaciones sobre la “isla de calor” generada en el medio urbano. Lurralde 14:143–162Google Scholar
  16. González-Aparicio I, Nuterman R, Korsholm US, Mahura A, Acero JA, Hidalgo J and Baklanov A (2010) Land-Use Database Processing Approach for Meso-Scale Urban NWP Model Initialization. DMI Scientific Report 10–02, 34 pages. ISBN: 978-87-7478-593-4. Available from
  17. Korsholm US, Baklanov A, Gross A, Sorensen JH (2008) On the importance of the meteorological coupling interval in dispersion modelling during ETEX-1. Atmos Environ. doi: 10.1016/j.atmosenv.2008.11.017
  18. Lemonsu A, Bastin S, Masson V, Drobinski P (2006) Vertical structure of the urban boundary layer overMarseille under sea-breeze conditions. Boundary-Layer Meteorol 118(3):477–501Google Scholar
  19. Lenderick G, de Rooy W (2000) A robust mixing length formulation for a TKE-1 turbulence scheme. Hirlam Newsl 36:25–29Google Scholar
  20. Mahura A, Leroyer S, Mestaryer P, Clamet I, DuPont S, Long N, Baklanov A, Petersen C, Sattler K, Nielsen NW (2005a) Large eddy simulation of urban features for Copenhagen metropolitan area. Atmos Chem Phys Discuss 5:11183–11213CrossRefGoogle Scholar
  21. Mahura A, Sattler K, Petersen C, Amstrup B, Baklanov A (2005b) DMI-HIRLAM modelling with high resolution setup and simulations for areas of Denmark DMI. Technical Report 05–12, 45 pGoogle Scholar
  22. Martilli A, Clappier A, Rotach M (2002) An urban surface exchange parameterisation for mesoscale models. Bound Layer Meteorol 104:261–304CrossRefGoogle Scholar
  23. Mazeikis A (2010) Modelling influence of urban territorios on meteorological parameters that affect air pollution dispersion using Enviro-HIRLAM: Vilnius case study. NetFam School on “Integrated Modelling of Meteorological and Chemical Transport Processes/Impact of Chemical Weather on Numerical Weather Prediction and Climate Modelling”Google Scholar
  24. Millán M, Alonso L, Legarreta A, Alvizu M, Ureta I, Egusquiaguirre C (1983) A fumigation episode in an industrialized estuary: Bilbao, November 1981. Atmos Environ 18:563–572Google Scholar
  25. Millán M, Otamendi E, Alonso L, Ureta I (1987) Experimental characterization of atmospheric diffusion in complex terrain with land–sea interactions. JAPCA 37:807–811CrossRefGoogle Scholar
  26. Montavez JP, Rodríguez A, Jiménez JI (2000) A study of the urban heat island of Granada. Int J Climatol 20:899–911CrossRefGoogle Scholar
  27. Moreno-Garcia (1994) Intensity and form of the urban heat island in Barcelona. Int J Climatol 14:705–710CrossRefGoogle Scholar
  28. Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549CrossRefGoogle Scholar
  29. Oke TR (1987) Boundary layer climates. 2nd edn. Routledge, LondonGoogle Scholar
  30. Pardo A (2007) Estudio de la isla de calor de la ciudad de Ibiza. Investigaciones Geográficas, No. 44: pp. 55–73. ISSN: 0213–4691Google Scholar
  31. Prats J, Rivera-Fernandez J, Martín F, Ezpeleta A (1993) Ciudad y Medioambiente: la isla de calor en Teruel. Geographicalia 30:113–123Google Scholar
  32. Prats J, Serrano S, Sanchez M (2005) Los efectos de la urbanización en el clima de Zaragoza (España): La isla de calor y sus factores condicionantes. Boletín A.G.E. No. 40: pp. 311–327Google Scholar
  33. Pielke RA Sr (2002) Mesoscale meteorological modeling, 2nd edn. Academic, San Diego, 676 ppGoogle Scholar
  34. Pigeon G, Lemonsu A, Grimmond CSB, Durand P, Thouron O, Masson V (2007) Divergence of turbulent fluxes in the surface layer: case of a coastal city. Bound Layer Meteorol. doi: 10.1007/s10546-007-9160-2
  35. Salamanca F, Martilli A, Yagüe C (2011) A numerical study of the Urban Heat Island over Madrid during the DESIREX (2008) campaign with WRF and an evaluation of simple mitigation strategies. Int J Climatol. doi: 10.1002/joc.3398
  36. Sobrino JA, Sória G, Oltra-Carrió R, Jiménez-Muñoz J, Romaguera M, Cuenca J, Hidalgo V, Franch B, Julien Y. DESIREX (2008) Urban Heat Island analysis in the city of Madrid. Rev Teledectección 1988–8740 (2009). Num 31Google Scholar
  37. Schwarz N, Lautenbach S, Seppelt R (2011) Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens Environ 15:3175–3186CrossRefGoogle Scholar
  38. United Nations (2010) Revision of World Urbanisation Prospects in 2010Google Scholar
  39. Yaguë, Zurita (1991) Statistical analysis of the Madrid urban heat island. Atmos Environ B Urban Atmos 25:327–332CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • I. González-Aparicio
    • 1
    • 2
  • J. Hidalgo
    • 3
  • A. Baklanov
    • 2
  • U. Korsholm
    • 2
  • R. Nuterman
    • 2
    • 4
  • A. Mahura
    • 2
  • O. Santa-Coloma
    • 1
  1. 1.Energy and Environment UnitTECNALIA Research and InnovationDerioSpain
  2. 2.Centre for Meteorological Model SystemsDanish Meteorological InstituteCopenhagen ØDenmark
  3. 3.Centre Nationale de Recherches MétéorologiquesMétéo-France & CNRSToulouse, CEDEXFrance
  4. 4.Mechanics and Mathematics FacultyTomsk State UniversityTomskRussia

Personalised recommendations