Theoretical and Applied Climatology

, Volume 113, Issue 1–2, pp 305–315 | Cite as

Multidecadal variability of summer temperature over Romania and its relation with Atlantic Multidecadal Oscillation

  • Monica Ionita
  • Norel Rimbu
  • Silvia Chelcea
  • Simona Patrut
Original Paper

Abstract

We investigate the multidecadal variability of summer temperature over Romania as measured at 14 meteorological stations with long-term observational records. The dominant pattern of summer temperature variability has a monopolar structure and shows pronounced multidecadal variations. A correlation analysis reveals that these multidecadal variations are related with multidecadal variations in the frequency of four daily atmospheric circulation patterns from the North Atlantic region. It is found that on multidecadal time scales, negative summer mean temperature (TT) anomalies are associated with positive sea level pressure (SLP) anomalies centered over the northern part of the Atlantic Ocean and Scandinavia and negative SLP anomalies centered over the northern part of Africa. It is speculated that a possible cause of multidecadal fluctuations in the frequency of these four patterns are the sea surface temperature (SST) anomalies associated to the Atlantic Multidecadal Oscillation (AMO). These results have implications for predicting the evolution of summer temperature over Romania on multidecadal time scales.

References

  1. Ansell T, Jones PD, Allan R, Lister D, Parker D, Brunet M, Moberg A, Jacobeit J, Brohan P, Rayner NA, Aguilar E, Barriendos M, Brandsma T, Cox NJ, Della-Marta P, Drebs A, Founda D, Gerstengarbe F, Hickey K, Jonsson T, Luterbacher J, Nordli O, Oesterle H, Petrakis M, Philipp A, Rodwell MJ, Saladie O, Sigro J, Slonosky V, Srnec L, Garcia-Suarez A, Tuomenvirta H, Wang X, Wanner H, Werner P, Wheeler D, Xoplaki E (2006) Daily mean sea level pressure reconstructions for the European–North Atlantic region for the period 1850–2003. J Clim 19:2717–2742CrossRefGoogle Scholar
  2. Bárdossy A, Caspary H (1990) Detection of climate change in Europe by analyzing European atmospheric circulation patterns from 1881 to 1989. Theor Appl Climatol 42:155–167CrossRefGoogle Scholar
  3. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126CrossRefGoogle Scholar
  4. Beck C, Jacobeit J, Jones PD (2007) Frequency and within-type variations of large scale circulation types and their effects on low-frequency climate variability in Central Europe since 1780. Int J Climatol 27:473–491CrossRefGoogle Scholar
  5. Bojariu R, Paliu D (2001) In: Brunet M, Lopez D (eds) North Atlantic oscillation projection on Romanian climate fluctuations in the cold season, detecting and modelling regional climate change and associated impacts. Springer, Berlin, pp 345–356CrossRefGoogle Scholar
  6. Busuioc A, Dumitrescu A, Soare E, Orzan A (2007) Summer anomalies in 2007 in the context of extremely hot and dry summers in Romania. Romanian J Meteor 9:1–16Google Scholar
  7. Cahynová M, Huth R (2009) Changes of atmospheric circulation in central Europe and their influence on climatic trends in the Czech Republic. Theor Appl Climatol 96:57–68CrossRefGoogle Scholar
  8. Cayan DR, Dettinger MD, Diaz HF, Graham NE (1998) Decadal variability of precipitation over western North America. J Clim 11:3148–3166CrossRefGoogle Scholar
  9. Christiansen B (2007) Atmospheric circulation regimes: can cluster analysis provide the number? J Clim 20:2229–2250CrossRefGoogle Scholar
  10. Compagnucci RH, Richman MB (2008) Can principal component analysis provide atmospheric circulation or teleconnection patterns? Int J Climatol 28:703–726CrossRefGoogle Scholar
  11. Croley TE II, Luukkonen CL (2003) Potential effects of climate change on ground water in Lansing, Michigan. J Am Water Resour Assoc 39(1):149–163CrossRefGoogle Scholar
  12. Dai AG, Fung IY, DelGenio AD (1997) Surface observed global land precipitation variations during 1900–1988. J Clim 10:2943–2962CrossRefGoogle Scholar
  13. Daubechies I (1990) The wavelet transform, time–frequency localization and signal analysis. IEEE Trans Inf Theory 36:965–1005CrossRefGoogle Scholar
  14. Della-Marta PM, Luterbacher J, von Weissenfluh H, Xoplaki E, Brunet M, Wanner H (2007) Summer heat waves over western Europe 1880–2003, their relationship to large scale forcings and predictability. Clim Dyn 29:251–275CrossRefGoogle Scholar
  15. Dorn W, Dethloff K, Rinke A, Roeckner E (2003) Competition of NAO regime changes and increasing greenhouse gases and aerosols with respect to Arctic climate projections. Clim Dyn 21:447–458CrossRefGoogle Scholar
  16. Dzerdzeevski BL (1968) Circulation of the atmosphere—circulation mechanisms of the atmosphere in the northern hemisphere in the 20th century (in Russian). Results of Meteorological Investigations, IGY Committee, Moscow. Inst. of Geography, Akad. Nauk., USSR, pp 240Google Scholar
  17. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:277–280CrossRefGoogle Scholar
  18. Fereday DR, Knight JR, Scaife AA, Folland CK, Philipp A (2008) Cluster analysis of North Atlantic–European circulation types and links with tropical Pacific Sea surface temperatures. J Clim 21:3687–3703CrossRefGoogle Scholar
  19. Fischer EM, Schär C (2009) Future changes in daily summer temperature variability: driving processes and role for temperature extremes. Clim Dyn 33:917–935CrossRefGoogle Scholar
  20. Folland CK, Parker DE, Palmer TN (1986) Sahel rainfall and worldwide sea temperatures 1901–85. Nature 320:602–607CrossRefGoogle Scholar
  21. Folland CK, Colman AW, Rowell DP, Davey MK (2001) Predictability of northeast Brazil rainfall and real-time forecast skill, 1987–98. J Clim 14:1937–1958CrossRefGoogle Scholar
  22. Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in the Atlantic hurricane activity: causes and implications. Science 293:474–479CrossRefGoogle Scholar
  23. Goubanova K, Li L (2007) Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Glob Planet Chang 57:27–42CrossRefGoogle Scholar
  24. Hess P, Brezowsky H (1969) Katalog der Grosswetterlagen Europas, 2. neu bearbeitete und ergänzte Aufl. Berichte des Deutschen Wetterdienstes 113. Offenbach am MainGoogle Scholar
  25. Hunt BG, Gordon HB (1988) The problem of naturally occurring drought. Clim Dyn 3:19–33CrossRefGoogle Scholar
  26. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  27. Huth R, Beck C, Philipp A, Demuzere M, Ustrnul Z, Cahynová M, Kyselý J, Tveito OE (2008) Classifications of atmospheric circulation patterns. Ann N Y Acad Sci 1146:105–152CrossRefGoogle Scholar
  28. IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) The physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge, UK, p 996Google Scholar
  29. Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe. J Clim 16:3665–3680CrossRefGoogle Scholar
  30. Klein Tank AMG, Können GP, Selten FM (2005) Signals of anthropogenic influence on European warming as seen in the trend patterns of daily temperature variance. Int J Climatol 25:1–16CrossRefGoogle Scholar
  31. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233 CrossRefGoogle Scholar
  32. Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33:L17706. doi:10.1029/2006GL026242 CrossRefGoogle Scholar
  33. Kyselý J, Huth R (2006) Changes in atmospheric circulation over Europe detected by objective and subjective methods. Theor Appl Climatol 85:19–36CrossRefGoogle Scholar
  34. Latif M, Arpe K, Roeckner E (2000) Oceanic control of decadal North Atlantic sea level pressure variability in winter. Geophys Res Lett 27:727–730CrossRefGoogle Scholar
  35. Latif M, Botset ERM, Esch M, Haak H, Hagemann S, Jungclaus J, Legutke S, Marsland S, Mikolajewicz U (2004) Reconstructing, monitoring and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J Clim 17:1605–1614CrossRefGoogle Scholar
  36. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503CrossRefGoogle Scholar
  37. Mann ME, Park J (1994) Global scale modes of surface temperature variability on interannual to century time scales. J Geophys Res 99:25819–25833CrossRefGoogle Scholar
  38. McCabe GJ, Palecki MA, Betancourt JL (2004) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc Natl Acad Sci 101:4136–4141CrossRefGoogle Scholar
  39. Mesta-Nuñez AM, Enfield DB (1999) Rotated global modes of non-ENSO sea surface temperature variability. J Clim 12:2734–2746CrossRefGoogle Scholar
  40. Osborn TJ, Briffa KR, Tett SFB, Jones PD, Trigo RM (1999) Evaluation of the North Atlantic oscillation as simulated by a coupled climate model. Clim Dyn 15:685–702CrossRefGoogle Scholar
  41. Philipp A (2009) Comparison of principal component and cluster analysis for classifying circulation pattern sequences for the European domain. Theor Appl Climatol 96:31–41. doi:10.1007/s00704-008-0037-1 CrossRefGoogle Scholar
  42. Philipp A, Della-Marta PM, Jacobeit J, Fereday DR, Jones PD, Moberg A, Wanner H (2007) Long term variability of daily North Atlantic–European pressure patterns since 1850 classified by simulated annealing clustering. J Clim 20(16):4065–4095CrossRefGoogle Scholar
  43. Rajagopalan B, Kushnir Y, Tourre YM (1998) Observed decadal midlatitude and tropical Atlantic climate variability. Geophys Res Lett 25:3967–3970CrossRefGoogle Scholar
  44. Rauthe M, Paeth H (2004) Relative importance of Northern hemisphere circulation modes in predicting regional climate change. J Clim 17:4180–4189CrossRefGoogle Scholar
  45. Rimbu N, Le Treut H, Janicot S, Boroneant C, Laurent C (2001) Decadal precipitation variability over Europe and its relation with surface atmospheric circulation and sea surface temperature. Q J R Meteorol Soc 127(572B):315–329CrossRefGoogle Scholar
  46. Rodwell MJ, Rowell DP, Folland CK (1999) Oceanic forcing of the wintertime North Atlantic oscillation and European climate. Nature 398:320–323CrossRefGoogle Scholar
  47. Rowell DP (2005) A scenario of European climate change for the late twenty-first century: seasonal means and interannual variability. Clim Dyn 25:837–849CrossRefGoogle Scholar
  48. Rowell DP, Folland CK, Maskell K, Ward MN (1995) Variability of summer rainfall over tropical north Africa (1906–92): observations and modelling. Q J R Meteorol Soc 121:669–704Google Scholar
  49. Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726CrossRefGoogle Scholar
  50. Slonosky VC, Yiou P (2001) The North Atlantic oscillation and its relationship with near surface temperature. Geophys Res Lett 28(5):807–810. doi:10.1029/2000GL012063 CrossRefGoogle Scholar
  51. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA's historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  52. Stephenson D, Pavan V, Collins M, Junge M, Quadrelli R, Participating CMIP2 modelling groups (2006) North Atlantic oscillation response to transient greenhouse gas forcing and the impact on European winter climate: a CMIP2 multi-model assessment. Clim Dyn 27:401–420CrossRefGoogle Scholar
  53. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 290:2133–2137Google Scholar
  54. Thompson DWJ, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  55. Tomozeiu R, Busuioc A, Stefan S (2002) Changes in seasonal mean of maximum air temperature in Romania and their connection with large-scale circulation. Int J Climatol 22:1181–1196CrossRefGoogle Scholar
  56. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78CrossRefGoogle Scholar
  57. Trigo RM, DaCamara CC (2000) Circulation weather types and their impact on the precipitation regime in Portugal. Int J Climatol 20:1559–1581CrossRefGoogle Scholar
  58. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, pp 510Google Scholar
  59. Watson RT and the Core Writing Team. Climate Change (2001) Synthesis report. Summary for policymakers. A report of the Intergovernmental Panel on Climate Change. IPCC Secretariat, c/o World Meteorological Organization, Geneva, SwitzerlandGoogle Scholar
  60. Xoplaki E, González-Rouco J, Luterbacher J, Wanner H (2003) Mediterranean summer air temperature variability and its connection to the large-scale atmospheric circulation and SSTs. Clim Dyn 20:723–739Google Scholar
  61. Yarnal B (1993) Synoptic climatology in environmental analysis. Belhaven, LondonGoogle Scholar
  62. Zorita E, Kharin V, von Storch H (1992) The atmospheric circulation and sea surface temperature in the North Atlantic area in winter: their interaction and relevance for Iberian precipitation. J Clim 5:1097–1108CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Monica Ionita
    • 1
  • Norel Rimbu
    • 1
    • 2
    • 3
  • Silvia Chelcea
    • 4
  • Simona Patrut
    • 3
    • 5
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.Climed NoradBucharestRomania
  3. 3.University of Bucharest, Faculty of PhysicsBucharest-MagureleRomania
  4. 4.National Institute of Hydrology and Water ManagementBucharestRomania
  5. 5.Ministry of Environment and ForestsBucharestRomania

Personalised recommendations