Theoretical and Applied Climatology

, Volume 113, Issue 1–2, pp 213–224 | Cite as

Spatial and temporal analysis of climate change in Hispañola

Original Paper

Abstract

Climate change in Hispañola is studied since 1900 using a variety of datasets. The longer station-observed temperature record has a significant trend of 0.012 °C/year, while the shorter reanalysis datasets exhibit faster warming, suggesting accelerating greenhouse radiative absorption and Hadley circulation. Rainfall trends are insignificant in the observed period, but a CMIP5 model simulation predicts a significant drying trend. The spatial pattern of climate trends was mapped with reanalysis fields and indicates a faster rate of warming over the eastern half of the island, where observations are dense and the drying trend is greatest. Northeasterly trade winds strengthen on the Atlantic side of the island. While trends intensify in the satellite era compared to the earlier 20th century, part of that effect is ascribed to an upturn in the Atlantic Multi-decadal Oscillation.

References

  1. Alfaro E, Amador JA (1997) Variability and climate change over Costa Rica. Meteorol Oceanogr Topics 4(1):52–60Google Scholar
  2. Bakun A (1990) Global climate change and intensification of coastal ocean upwelling. Science 247:198–201CrossRefGoogle Scholar
  3. Battisti D, Bitz M, Moritz R (1997) Do general circulation models underestimate the natural variability in the Arctic climate? J Clim 10:1909–1920CrossRefGoogle Scholar
  4. Berger A, Tricot C, Gallee H, Loutre MF (1993) Water vapor, CO2 and insolation over the last glacial–interglacial cycles. Phill Trans R Soc London B 341:253–261CrossRefGoogle Scholar
  5. Cess RD et al (1993) Uncertainties in CO2 radiative forcing in atmospheric general circulation models. Science 262:1252–1255CrossRefGoogle Scholar
  6. Chen C-T, Ramaswamy V (1996a) Sensitivity of simulated global climate to perturbations in low cloud microphysical properties. I. Globally uniform perturbations. J Clim 9:1385–1402CrossRefGoogle Scholar
  7. Chen C-T, Ramaswamy V (1996b) Sensitivity of simulated global climate to perturbations in low cloud microphysical properties. II. Globally uniform perturbations. J Clim 9:2788–2801CrossRefGoogle Scholar
  8. Chen AA, Taylor M (2002) Investigating the link between early season Caribbean rainfall and the El Niño + 1 year. Int J Climatol 22:87–106CrossRefGoogle Scholar
  9. Collins DA, Della-Marta PM, Plumier N, Trewin BC (2000) Trends in annual frequencies of extreme temperature events in Australia. Aust Meteorol Mag 49:277–292Google Scholar
  10. Cox SJ, Wang W-C, Schwartz SE (1995) Climate response to forcing by sulfate aerosols and green house gases. Geophys Res Lett 18:2509–2512CrossRefGoogle Scholar
  11. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 13:553–597CrossRefGoogle Scholar
  12. Dickinson RE (1982) In: Carbon dioxide review. Clark WC (ed). Clarendo, New York, N. Y. USA. 101–103Google Scholar
  13. Doherty RM, Hulme M, Jones CG (1999) A gridded reconstruction of land and ocean precipitation for extended tropics from 1974–1994. Int J Climatol 19:119–142CrossRefGoogle Scholar
  14. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Meams LO (2000) Climate extremes: observations, modeling and impacts. Science 289:2068–2070CrossRefGoogle Scholar
  15. Folland CK, Miller C, Bader D, Crowe M, Jones P, Plummer N, Parker DE, Rogers J, Scholfield P (1999) Temperature indices for climate extremes. Clim Change 42:31–43CrossRefGoogle Scholar
  16. Folland CK, Rayner N, Frich P, Basnett T, Parker D, Holton B (2000) Uncertainties in climate data sets—a challenge for WMO. WMO Bull 49:59–68Google Scholar
  17. de Forster PMF, Shine KP (1997) Radiative forcing and temperature trends from stratospheric ozone changes. J Geophys Res 102:10841–10857CrossRefGoogle Scholar
  18. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein-Tank A, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the 20th century. Clim Res 19:193–202CrossRefGoogle Scholar
  19. Giannini A, Kushnir Y, Cane MA (2000) Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J Clim 13:297–311CrossRefGoogle Scholar
  20. Gruza G, Rankova E, Razuvaev V, Bulygina O (1999) Indicators of climate change for the Russian Federation. Clim Change 42:219–242CrossRefGoogle Scholar
  21. Hansen J (2005) A slippery slope: how much global warming constitutes “dangerous anthropogenic interference”? Clim Change 68:269–279CrossRefGoogle Scholar
  22. Hansen J, Lebedeff S (1988) Global surface temperatures: update through 1987. Geophys Res Lett 15:323–326CrossRefGoogle Scholar
  23. Hansen J, Lacis A, Rind D, Russell G, Stone P, Fung I, Ruedy R, Lerner J (1984) Climate sensitivity: analysis of feedback mechanisms. In: Hansen J, Takahashi T (eds) Climate processes and climate sensitivity. Geophysi. Monogr. Ser., New York, 29. Amer Geophysical Union, Washington D.C., pp 130–163CrossRefGoogle Scholar
  24. Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864CrossRefGoogle Scholar
  25. Hasumi H, Emori S (2004) K-1 (MIROC) model development, K-1 Tech. Rep. 1, Frontier Research Center for Global Change, Japan, 39 ppGoogle Scholar
  26. Haywood J, Wetherald R, Manabe S, Ramaswamy V (1997) Transient response of a coupled model to estimated changes in greenhouse gas response and sulfate concentration. Geophys Res Lett 24:1335–1338CrossRefGoogle Scholar
  27. Hewitt CD, Mitchell JFB (1997) Radiative forcing and response of a GCM to ice age boundary conditions: cloud feedback and climate sensitivity. Clim Dyn 13:821–834CrossRefGoogle Scholar
  28. Houghton JT, Ding Y, Griggs DJ, Noguer M, Vander Linden PJ, Xiaso D (2001) Climate change 2001. The scientific basis. Cambridge University Press, Cambridge, 944 ppGoogle Scholar
  29. Hulme M, Osborn TJ, Johns TC (1998) Precipitation sensitivity to global warming: comparison of observations with HadCM2 simulations. Geophys Res Lett 25:3379–3382CrossRefGoogle Scholar
  30. Huntingford C, Stott P, Allen M, Lambert H (2006) Incorporating model uncertainly into attribution of observed temperature change. Geophys Res Lett 33:L5710CrossRefGoogle Scholar
  31. IPCC (1990) Climate change, the Intergovernmental Panel on Climate Change Scientific Assessment (Houghton, J. T., B.A. Callander, and S.K. Varney eds). Cambridge University PressGoogle Scholar
  32. IPCC (1996) Climate change: the science of climate change. contributions of working group I to the second assessment report of the intergovernmental panel on climate change In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds.). Cambridge University Press, Cambridge, 572 ppGoogle Scholar
  33. IPCC (2001) Climate change: the scientific basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Houghton, J.T., Y. Ding., D J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson eds.). Cambridge University Press, Cambridge, 881 ppGoogle Scholar
  34. Jones PD (1999) Classics in physical geography revisited—Manley's CET series. Prog Phys Geogr 23:425–428CrossRefGoogle Scholar
  35. Jones PD, Hulme M (1996) Calculating regional climatic time series for temperature and precipitation: methods and illustrations. Int J Climatol 16:361–377CrossRefGoogle Scholar
  36. Jones EP, Aagaard K, Camack EC, MacDonalds RW, McLaughlin FA, Perkin RG, Swift JH (1996) Recent changes in Artic Ocean thermohaline structure: results from the Canada/USA 1994 Arctic Ocean section. Mem Natl Inst Polar Res Spec Issue 51:307–315Google Scholar
  37. Jones PD, Osborn TJ, Briffa KR, Folland CK, Horton EB, Alexander LV, Parker DE, Rayner NA (2001) Adjusting for sampling density in grid box land and ocean surface temperature time series. J Geophys Res 106:3371–3380CrossRefGoogle Scholar
  38. Jury MR (2011a) Long term variability and trends in the Caribbean Sea. Intl J Oceanogr. doi:10.1155/2011/465810
  39. Jury MR (2011b) Representation of the Caribbean mean diurnal cycle in observation, reanalysis, and CMIP3 model datasets. Theor Appl Climatol 107:313–324CrossRefGoogle Scholar
  40. Jury MR, Chiao S (2011) Meso-circulation associated with summer convection over the central Antilles. Earth Interact 15:1–19CrossRefGoogle Scholar
  41. Jury MR, Whitehall K (2009) Warming of an elevated layer over Africa. Clim Chang. doi:10.1007/s10584-009-9657-4
  42. Jury MR, Winter A (2009) Warming of an elevated layer over the Caribbean. Clim Chang. doi:10.1007/s10584-009-9658-3
  43. Karl TR, Knight RW (1998) Secular trends of precipitations amount, frequency, and intensity in the USA. Bul Amer Met Soc 79:231–241CrossRefGoogle Scholar
  44. Karl TR, Kukla G, Razuvayev VN, Changery MJ, Quayle RG, Heim RR, Easterling DR, Fu CB (1991) Global warming: evidence for asymmetric diurnal temperature change. Geophys Research Letters 18:2253CrossRefGoogle Scholar
  45. Karl TR, Jones PD, Knight RW, Kukla G, Plummer N, Razuvayev V, Gallo KP, Lindesay J, Peterson TC (1993) A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temperatures. Bull Amer Meterol Soc 14:1007–1023CrossRefGoogle Scholar
  46. Katz RW (1999) Extreme value theory for precipitation: sensitivity analysis for climate change. Adv Water Resour 23:133–139CrossRefGoogle Scholar
  47. Kondratyev KY (1999) Climate effects of aerosols and clouds. Springer, Berlin, p 264Google Scholar
  48. Kunkel KE, Changnon SA, Reinke BC, Arritt RW (1996) The July 1995 heat wave in the Midwest: a climate perspective and critical weather factors. Bull Am Met Soc 77:1507–1518CrossRefGoogle Scholar
  49. Kunkel KE, Andsager K, Easterling DR (1999) Long-term trends in extreme precipitation events over the conterminous United States and Canada. J Clim 12:2515–2527CrossRefGoogle Scholar
  50. Lacis AA, Webbles DJ, Logan JA (1990) Radiative forcing by changes in the vertical distribution of ozone. J Geophys Res 95:9971–9981CrossRefGoogle Scholar
  51. Le Treut H, Forichon M, Boucher O, Li Z-X (1998) Sulfate aerosol, indirect effect and CO2 greenhouse forcing: equilibrium response of the LMD GCM and associated cloud feedbacks. J Clim 11:1673–1684CrossRefGoogle Scholar
  52. Manabe S, Broccoli AJ (1985) The influence of continental ice sheets on the climate of an ice age. J Geophys Res 90:2167–2190CrossRefGoogle Scholar
  53. Martis A, van Oldenborgh GJ, Burgers G (2002) Predicting rainfall in the Dutch Caribbean—more than El Niño. Int J Climatol 22:1219–1234CrossRefGoogle Scholar
  54. Meehl GA, Karl T, Easterling DR, Changnon S, Pielke RJ, Changnon D, Evans J, Groisman PY, Knutson TR, Kunkel KE, Mearns LO, Parmesan C, Pulwarty R, Root R, Sylves RT, Whetton P, Zwiers F (2000) An introduction to trends in extreme weather and climate events: observations. Socioeconomic impacts and model projections. Bull Am Meteorol Soc 81:2983–2985CrossRefGoogle Scholar
  55. Mesinger F et al (2006) North American regional reanalysis. Bull Amer Meteorol Soc 87:343–360CrossRefGoogle Scholar
  56. Michaels PJ, Balling RC Jr, Vose RS, Knappenberger PC (1998) Analysis of trends on the variability of daily and monthly historical temperature measurements. Clim Res 10:27–33CrossRefGoogle Scholar
  57. Montealegre BJE, Pabón DJ (2002) Follow-up, diagnostic and climatic forecast in Colombia. Institute of Hydrology, Meteorolology and Environmental Studies (IDAM), 2–10Google Scholar
  58. Neelin JD, Mnnich M, Su H, Meyerson, Holloway CE (2006) Tropical drying trends in global warming models and observations. Proc Natl Acad Sci 103(16):6110–6115CrossRefGoogle Scholar
  59. Nicholls N, Murray W (1999) Indices and Indicators for climate extremes, Ashville, NC, USA. Breakout group B: precipitation. Clim Change 42:23–29CrossRefGoogle Scholar
  60. Parker DE (1994) Effects of changing exposures of thermometers at land stations. Int J Climatol 14:102–113CrossRefGoogle Scholar
  61. Peterson TC, Vose RS (1997) An overview of the global historical climatology network temperature data base. Bull Amer Met Soc 78:2837–2849CrossRefGoogle Scholar
  62. Peterson TCRS, Vose RS, Razuvav V (1998) GHCN quality control of monthly temperature data. Int J Climatol 18:1169–1179CrossRefGoogle Scholar
  63. Peterson TC, Gallo KP, Livermore J, Owen TW, Huang A, McKittrick DA (1999) Global rural temperature trends. Geophys Res Lett 26:329–332CrossRefGoogle Scholar
  64. Peterson TC, Taylor MA, Demeritte R, Duncombe DL, Burton S, Thomson F, Porter A, Mercedes M, Villegas E, Fils SR, Tank KA, Martis A, Warner R, Joyette A, Mills W, Alexander L, Byron G (2002) Recent changes in climate extremes in the Caribbean region. J Geophys Res 107:4601. doi:10.1029/2002/JD002251 CrossRefGoogle Scholar
  65. Ramanathan V (1981) The role of ocean–atmosphere interactions in the CO2-climate problem. J Atmos Sci 38:918–930CrossRefGoogle Scholar
  66. Ramanathan V, Cicerone R, Singh H, Kiehl J (1985) Trace gas trend and their potential role in climate change. J Geophys Res 90:5547–5566CrossRefGoogle Scholar
  67. Ramaswamy V, Chen C-T (1997) Linear additivity of climate response for combined albedo and greenhouse perturbations. Geophys Res Lett 24:567–570CrossRefGoogle Scholar
  68. Rausher S, Giorgi F, Noah D, Anji S (2008) Extension and intensification of the meso-American mid-summer drought in the twenty-first century. Clim Dyn 31:551–571CrossRefGoogle Scholar
  69. Rind D, Pettit D, Kukla G (1989) Can Milankovitch orbital variations initiate the growth of ice sheets in a GCM? J Geophys Res 94:12851–12871CrossRefGoogle Scholar
  70. Roeckner E, Siebert T, Feichter J (1994) Climate response to anthropogenic sulfate with a general circulation model. In: Charson R, Heintzenberg J (eds) Aerosol forcing of climate. John Wiley & Sons, Chichester, pp 349–362Google Scholar
  71. Rudloff W (1981) World-climates, with tables of climatic data and practical suggetions. Wissenschaftliche Verlagsgesellschaft mbH, StuttgartGoogle Scholar
  72. Rudolf B, Schneider U (2005) Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations, Proc Intl Precip Working Group, Monterey, Eumetsat contribution. 517–524Google Scholar
  73. Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Amer Meteor Soc 91:1015–1057CrossRefGoogle Scholar
  74. Salinger MJ (2005) Climate variability and change: past, present and future—an overview. Clim Change 70:9–20CrossRefGoogle Scholar
  75. Shar C, Vidale P, Luthi D, Frei C, Haberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–335CrossRefGoogle Scholar
  76. Singh B (1997) Climate changes in the greater and southern Caribbean. Intl J Climatol 17:1093–1114CrossRefGoogle Scholar
  77. Taylor KE, Penner JE (1994) Response of the climate system to atmospheric aerosols and greenhouse gases. Nature 369:734–737CrossRefGoogle Scholar
  78. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Amer Met Soc 93:485–498CrossRefGoogle Scholar
  79. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Amer Meteor Soc 79:61–78CrossRefGoogle Scholar
  80. Trenberth KE, Owen TW (1999) Indices and indicators for climate extremes, Asheville, NC, 3–6 June 1999Google Scholar
  81. Vinnikov K, Groisman PY, Lugina KM (1990) Empirical data on contemporary global climate changes (temperature and precipitation). J Clim 3:662–677CrossRefGoogle Scholar
  82. Wang W-C, Dudek M, Liang X-Z, Kiehl J (1991) Inadequacy of effective CO2 as a proxy in simulating the greenhouse effect of other radiatively active gases. Nature 350:573–577CrossRefGoogle Scholar
  83. Wang C, Lee S-K, Enfield DB (2008) Atlantic warm pool as a link between Atlantic multidecadal oscillation and Atlantic tropical cyclone activity. Geochem Geophys Geosyst 9:Q05V03. doi:10.1029/2007GC001809 Google Scholar
  84. Wetherald R, Manabe S (1988) Cloud feedback processes in a general circulation model. J Atmos Sci 45:1397–1415CrossRefGoogle Scholar
  85. WMO (1986) Atmospheric ozone: global ozone research and monitoring project, World Meteorological Organization, report 16, chapter 15, Geneva, SwitzerlandGoogle Scholar
  86. WMO (1992) Scientific assessment of ozone depletion: World Meteorological Organization, report 25. Switzerland, GenevaGoogle Scholar
  87. WMO (2003) Our future climate. Bulletin 52, 238–243. World Meteorological Organization, (WMO) Geneva, SwitzerlandGoogle Scholar
  88. Yukimoto S, Noda A, Uchiyama T, Kusunoki S, Kitoh A (2006) Climate changes of the twentieth through twenty-first centuries simulated by the MRI-CGCM2.3. Pap Metor Geophys 56:9–24CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Dominican Republic Weather ServiceSanto DomingoDominican Republic
  2. 2.University Puerto Rico MayaguezMayaguezUSA
  3. 3.University of ZululandKwaDlangezwaSouth Africa

Personalised recommendations