Theoretical and Applied Climatology

, Volume 113, Issue 1–2, pp 197–204 | Cite as

The global signature of the ENSO and SST-like fields

Original Paper


The El Niño–Southern Oscillation (ENSO)-like variability of various parameters and indices (e.g. sea surface temperature (SST)) is explored, by employing the last six decades of data on a global scale. We found that the ENSO signal in the SST field extends over tropics and subtropics, becoming maximum around 30° N and 30° S. The pronounced ENSO signal in the SST is observed over the southern tropics and subtropics. Additionally, the investigation of regional links between the Pacific Decadal Oscillation and SST revealed a new regional link, which extends in the tropical southern Pacific Ocean, where the effects of a long-lived pattern of SST are taking place. Furthermore, very strong SST-like surface temperature behaviour is observed over the equatorial Indian Ocean, being a new input to the assessment of “dangerous anthropogenic interference”. The above-mentioned findings could be employed to the advanced modelling development to improve climate change projections.


  1. Alexandris D, Varotsos C, Kondratyev KY, Chronopoulos G (1999) On the altitude dependence of solar effective UV. Phys Chem Earth Part C-Solar-Terr Planet Sci 24:515–517Google Scholar
  2. Allan RJ, Nicholls N, Jones PD, Butterworth IJ (1991) A further extension of the Tahiti-Darwin SOI, early SOI results and Darwin pressure. J Climate 4:743–749CrossRefGoogle Scholar
  3. Anderson SR, Aziz O, Tootle G, Grissino-Mayer H, Barnett A (2012) Using Pacific Ocean climatic variability to improve hydrologic reconstructions. J Hydrol 434–435:69–77CrossRefGoogle Scholar
  4. Arnold N, Kuang Z, Tziperman E (2012) Enhanced MJO-like variability at high SST. J Atmos Sci 69:626–640CrossRefGoogle Scholar
  5. Basher RE, Zheng X (1995) Tropical cyclones in the southwest Pacific: spatial patterns and relationships to Southern Oscillation and sea surface temperature. J Climate 8:1249–1260CrossRefGoogle Scholar
  6. Cai W, van Rensch P (2012) The 2011 southeast Queensland extreme summer rainfall: a confirmation of a negative Pacific Decadal Oscillation phase? Geophys Res Lett 39:L08702. doi: 10.1029/2011GL050820 CrossRefGoogle Scholar
  7. Carleton AM (2003) Atmospheric teleconnections involving the Southern Ocean. J Geophys Res 108:8080–8094. doi: 10.1029/2000JC000379 CrossRefGoogle Scholar
  8. Chandra S, Varotsos CA (1995) Recent trends of the total column ozone—implications for the Mediterranean region. Int J Remote Sens 16:1765–1769CrossRefGoogle Scholar
  9. Chattopadhyay S, Chattopadhyay G (2010) Univariate modelling of summer-monsoon rainfall time series: comparison between ARIMA and ARNN. CR Geosci 342:100–107CrossRefGoogle Scholar
  10. Christy JR, Spencer RW, Braswell WD (2000) MSU tropospheric temperatures: dataset construction and radiosonde comparisons. J Atmos Oceanic Tech 17:1153–1170CrossRefGoogle Scholar
  11. Ciasto LM, England MH (2011) Observed ENSO teleconnections to Southern Ocean SST anomalies diagnosed from a surface mixed layer heat budget. Geophys Res Let 38:L09701. doi: 10.1029/2011GL046895 CrossRefGoogle Scholar
  12. Cordery I (1999) Long range forecasting of low rainfall. Int J Climatol 19:463–470CrossRefGoogle Scholar
  13. Cracknell AP, Varotsos CA (1994) Ozone depletion over Scotland as derived from Nimbus-7 TOMS measurements. Int J Remote Sens 15:2659–2668CrossRefGoogle Scholar
  14. Cracknell AP, Varotsos CA (1995) The present status of the total ozone depletion over Greece and Scotland—a comparison between Mediterranean and more northerly latitudes. Int J Remote Sens 16:1751–1763CrossRefGoogle Scholar
  15. Cracknell AP, Varotsos CA (2007a) The IPCC fourth assessment report and the fiftieth anniversary of Sputnik. Environ Sci Pollut R 14:384–387Google Scholar
  16. Cracknell AP, Varotsos CA (2007b) Fifty years after the first artificial satellite: from Sputnik 1 to ENVISAT. Int J Remote Sens 28:2071–2072Google Scholar
  17. Efstathiou M, Varotsos C, Kondratyev KY (1998) An estimation of the surface solar ultraviolet irradiance during an extreme total ozone minimum. Meteorol Atmos Phys 68:171–176CrossRefGoogle Scholar
  18. Evans MN, Cane MA, Schrag DP, Kaplan A, Linsley BK, Villalba R, Wellington GM (2001) Support for tropically-driven Pacific decadal variability based on paleoproxy evidence. Geophys Res Lett 28:3689–3692CrossRefGoogle Scholar
  19. Feretis E, Theodorakopoulos P, Varotsos C, Efstathiou M, Tzanis C, Xirou T, Alexandridou N, Aggelou M (2002) On the plausible association between environmental conditions and human eye damage. Environ Sci Pollut R 9:163–165CrossRefGoogle Scholar
  20. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global Temperature Change. PNAS 103:14288–93CrossRefGoogle Scholar
  21. Hoerling MP, Kumar A, Xu T (2001) Robustness of the nonlinear climate response to ENSO’s extreme phases. J Climate 14:1277–1293CrossRefGoogle Scholar
  22. Horinouchi T (2012) Moist Hadley circulation: possible role of wave–convection coupling in aquaplanet experiments. J Atmos Sci 69:891–907CrossRefGoogle Scholar
  23. Katsambas AD, Katoulis AC, Varotsos C (1998) Sun education in Greece. Clin Dermatol 16:525–526Google Scholar
  24. Kondratyev KY, Varotsos CA (1995a) Atmospheric ozone variability in the context of global change. Int J Remote Sens 16:1851–1881CrossRefGoogle Scholar
  25. Kondratyev KY, Varotsos C (1995b) Atmospheric greenhouse effect in the context of global climate change. Nuovo Cimento Soc Ital Fis, C - Geophys Space Phys 18:123–151Google Scholar
  26. Kondratyev KY, Varotsos CA (1996) Global total ozone dynamics—impact on surface solar ultraviolet radiation variability and ecosystems. Environ Sci Pollut R 3:205–209CrossRefGoogle Scholar
  27. Konnen GP, Jones PD, Kaltofen MH, Allan RJ (1998) Pre-1866 extensions of the Southern Oscillation Index using early Indonesian and Tahitian meteorological readings. J Climate 11:2325–2339CrossRefGoogle Scholar
  28. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. B Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  29. McGowan JA, Cayan DR, Dorman LM (1998) Climate-ocean variability and ecosystem response in the Northeast Pacific. Science 281 210 doi:  10.1126/science.281.5374.210
  30. Neef LJ, Matthes K (2012) Comparison of Earth rotation excitation in data-constrained and unconstrained atmosphere models. J Geophys Res 117:D02107. doi: 10.1029/2011JD016555 CrossRefGoogle Scholar
  31. Newmann M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific Decadal Oscillation. J Climate 16:3853–3857CrossRefGoogle Scholar
  32. Reynolds RW, Rayner NA, Smith NA, Stokes DC, Wang DC (2002) An improved in situ and satellite SST analysis for climate. J Climate 15:1609–1625CrossRefGoogle Scholar
  33. Ropelewski CF, Jones PD (1987) An extension of the Tahiti-Darwin Southern Oscillation Index. Mon Weather Rev 115:2161–2165CrossRefGoogle Scholar
  34. Tzanis C, Varotsos C, Viras L (2008) Impacts of the solar eclipse of 29 March 2006 on the surface ozone concentration, the solar ultraviolet radiation and the meteorological parameters at Athens, Greece. Atmos Chem Phys 8:425–430CrossRefGoogle Scholar
  35. Varotsos C (1987) Quasi-stationary planetary waves and temperature reference atmosphere. Meteorol Atmos Phys 37:297–299CrossRefGoogle Scholar
  36. Varotsos C (1989) Connections between the 11-year solar cycle, the QBO and total ozone—comments. J Atmos Terr Phys 51:367–370CrossRefGoogle Scholar
  37. Varotsos C (2002) The southern hemisphere ozone hole split in 2002. Environ Sci Pollut R 9:375–376CrossRefGoogle Scholar
  38. Varotsos C (2005a) Power-law correlations in column ozone over Antarctica. Int J Remote Sens 26:3333–3342CrossRefGoogle Scholar
  39. Varotsos C (2005b) Airborne measurements of aerosol, ozone, and solar ultraviolet irradiance in the troposphere. J Geophys Res 110:10. doi: 10.1029/2004JD005397
  40. Varotsos C, Kirk-Davidoff D (2006) Long-memory processes in ozone and temperature variations at the region 60 degrees S–60 degrees N. Atmos Chem Phys 6:4093–4100CrossRefGoogle Scholar
  41. Varotsos C, Kalabokas P, Chronopoulos G (1994) Association of the laminated vertical ozone structure with the lower stratospheric circulation. J Appl Meteorol 33:473–476CrossRefGoogle Scholar
  42. Varotsos CA, Chronopoulos GJ, Katsikis S, Sakellariou NK (1995) Further evidence of the role of air pollution on solar ultraviolet radiation reaching the ground. Int J Remote Sens 16:1883–1886CrossRefGoogle Scholar
  43. Varotsos CA, Ondov JM, Cracknell AP, Efstathiou MN, Assimakopoulos MN (2006) Long-range persistence in global Aerosol Index dynamics. Int J Remote Sens 27:3593–3603Google Scholar
  44. Varotsos C, Assimakopoulos MN, Efstathiou M (2007) Technical note: Long-term memory effect in the atmospheric CO2 concentration at Mauna Loa. Atmos Chem Phys 7:629–634Google Scholar
  45. Varotsos C, Efstathiou M, Tzanis C (2009a) Scaling behaviour of the global tropopause. Atmos Chem Phys 9:677–683CrossRefGoogle Scholar
  46. Varotsos C, Tzanis C, Cracknell A (2009b) The enhanced deterioration of the cultural heritage monuments due to air pollution. Environ Sci Pollut R 16:590–592Google Scholar
  47. Varotsos PA, Sarlis NV, Skordas ES (2003a) Long-range correlations in the electric signals that precede rupture: further investigations. Phys Rev E. doi: 10.1103/PhysRevE.67.021109
  48. Varotsos PA, Sarlis NV, Skordas ES (2003b) Attempt to distinguish electric signals of a dichotomous nature. Phys Rev E. doi: 10.1103/PhysRevE.68.031106
  49. Weickmann KM, Robinson WA, Penland MC (2000) Stochastic and oscillatory forcing of global atmospheric angular momentum. J Geophys Res 105:15543–15557CrossRefGoogle Scholar
  50. Woolhiser DA (2008) Combined effects of the Southern Oscillation Index and the Pacific Decadal Oscillation on a stochastic daily precipitation model. J Climate 21:1139–1152CrossRefGoogle Scholar
  51. Xue Y, Ai J, Wan W, Guo H, Li Y, Wang Y, Guang J, Mei L, Xu H (2011) Grid-enabled high-performance quantitative aerosol retrieval from remotely sensed data. Comput Geosci-UK 37:202–206CrossRefGoogle Scholar
  52. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Climate 10:1004–1020CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Climate Research Group, Division of Environmental Physics and Meteorology, Faculty of PhysicsUniversity of AthensAthensGreece

Personalised recommendations