Advertisement

Theoretical and Applied Climatology

, Volume 113, Issue 1–2, pp 197–204 | Cite as

The global signature of the ENSO and SST-like fields

  • Costas A. Varotsos
Original Paper

Abstract

The El Niño–Southern Oscillation (ENSO)-like variability of various parameters and indices (e.g. sea surface temperature (SST)) is explored, by employing the last six decades of data on a global scale. We found that the ENSO signal in the SST field extends over tropics and subtropics, becoming maximum around 30° N and 30° S. The pronounced ENSO signal in the SST is observed over the southern tropics and subtropics. Additionally, the investigation of regional links between the Pacific Decadal Oscillation and SST revealed a new regional link, which extends in the tropical southern Pacific Ocean, where the effects of a long-lived pattern of SST are taking place. Furthermore, very strong SST-like surface temperature behaviour is observed over the equatorial Indian Ocean, being a new input to the assessment of “dangerous anthropogenic interference”. The above-mentioned findings could be employed to the advanced modelling development to improve climate change projections.

Keywords

Pacific Decadal Oscillation Southern Oscillation Index Equatorial Indian Ocean Tropical Pacific Ocean Atmospheric Angular Momentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alexandris D, Varotsos C, Kondratyev KY, Chronopoulos G (1999) On the altitude dependence of solar effective UV. Phys Chem Earth Part C-Solar-Terr Planet Sci 24:515–517Google Scholar
  2. Allan RJ, Nicholls N, Jones PD, Butterworth IJ (1991) A further extension of the Tahiti-Darwin SOI, early SOI results and Darwin pressure. J Climate 4:743–749CrossRefGoogle Scholar
  3. Anderson SR, Aziz O, Tootle G, Grissino-Mayer H, Barnett A (2012) Using Pacific Ocean climatic variability to improve hydrologic reconstructions. J Hydrol 434–435:69–77CrossRefGoogle Scholar
  4. Arnold N, Kuang Z, Tziperman E (2012) Enhanced MJO-like variability at high SST. J Atmos Sci 69:626–640CrossRefGoogle Scholar
  5. Basher RE, Zheng X (1995) Tropical cyclones in the southwest Pacific: spatial patterns and relationships to Southern Oscillation and sea surface temperature. J Climate 8:1249–1260CrossRefGoogle Scholar
  6. Cai W, van Rensch P (2012) The 2011 southeast Queensland extreme summer rainfall: a confirmation of a negative Pacific Decadal Oscillation phase? Geophys Res Lett 39:L08702. doi: 10.1029/2011GL050820 CrossRefGoogle Scholar
  7. Carleton AM (2003) Atmospheric teleconnections involving the Southern Ocean. J Geophys Res 108:8080–8094. doi: 10.1029/2000JC000379 CrossRefGoogle Scholar
  8. Chandra S, Varotsos CA (1995) Recent trends of the total column ozone—implications for the Mediterranean region. Int J Remote Sens 16:1765–1769CrossRefGoogle Scholar
  9. Chattopadhyay S, Chattopadhyay G (2010) Univariate modelling of summer-monsoon rainfall time series: comparison between ARIMA and ARNN. CR Geosci 342:100–107CrossRefGoogle Scholar
  10. Christy JR, Spencer RW, Braswell WD (2000) MSU tropospheric temperatures: dataset construction and radiosonde comparisons. J Atmos Oceanic Tech 17:1153–1170CrossRefGoogle Scholar
  11. Ciasto LM, England MH (2011) Observed ENSO teleconnections to Southern Ocean SST anomalies diagnosed from a surface mixed layer heat budget. Geophys Res Let 38:L09701. doi: 10.1029/2011GL046895 CrossRefGoogle Scholar
  12. Cordery I (1999) Long range forecasting of low rainfall. Int J Climatol 19:463–470CrossRefGoogle Scholar
  13. Cracknell AP, Varotsos CA (1994) Ozone depletion over Scotland as derived from Nimbus-7 TOMS measurements. Int J Remote Sens 15:2659–2668CrossRefGoogle Scholar
  14. Cracknell AP, Varotsos CA (1995) The present status of the total ozone depletion over Greece and Scotland—a comparison between Mediterranean and more northerly latitudes. Int J Remote Sens 16:1751–1763CrossRefGoogle Scholar
  15. Cracknell AP, Varotsos CA (2007a) The IPCC fourth assessment report and the fiftieth anniversary of Sputnik. Environ Sci Pollut R 14:384–387Google Scholar
  16. Cracknell AP, Varotsos CA (2007b) Fifty years after the first artificial satellite: from Sputnik 1 to ENVISAT. Int J Remote Sens 28:2071–2072Google Scholar
  17. Efstathiou M, Varotsos C, Kondratyev KY (1998) An estimation of the surface solar ultraviolet irradiance during an extreme total ozone minimum. Meteorol Atmos Phys 68:171–176CrossRefGoogle Scholar
  18. Evans MN, Cane MA, Schrag DP, Kaplan A, Linsley BK, Villalba R, Wellington GM (2001) Support for tropically-driven Pacific decadal variability based on paleoproxy evidence. Geophys Res Lett 28:3689–3692CrossRefGoogle Scholar
  19. Feretis E, Theodorakopoulos P, Varotsos C, Efstathiou M, Tzanis C, Xirou T, Alexandridou N, Aggelou M (2002) On the plausible association between environmental conditions and human eye damage. Environ Sci Pollut R 9:163–165CrossRefGoogle Scholar
  20. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global Temperature Change. PNAS 103:14288–93CrossRefGoogle Scholar
  21. Hoerling MP, Kumar A, Xu T (2001) Robustness of the nonlinear climate response to ENSO’s extreme phases. J Climate 14:1277–1293CrossRefGoogle Scholar
  22. Horinouchi T (2012) Moist Hadley circulation: possible role of wave–convection coupling in aquaplanet experiments. J Atmos Sci 69:891–907CrossRefGoogle Scholar
  23. Katsambas AD, Katoulis AC, Varotsos C (1998) Sun education in Greece. Clin Dermatol 16:525–526Google Scholar
  24. Kondratyev KY, Varotsos CA (1995a) Atmospheric ozone variability in the context of global change. Int J Remote Sens 16:1851–1881CrossRefGoogle Scholar
  25. Kondratyev KY, Varotsos C (1995b) Atmospheric greenhouse effect in the context of global climate change. Nuovo Cimento Soc Ital Fis, C - Geophys Space Phys 18:123–151Google Scholar
  26. Kondratyev KY, Varotsos CA (1996) Global total ozone dynamics—impact on surface solar ultraviolet radiation variability and ecosystems. Environ Sci Pollut R 3:205–209CrossRefGoogle Scholar
  27. Konnen GP, Jones PD, Kaltofen MH, Allan RJ (1998) Pre-1866 extensions of the Southern Oscillation Index using early Indonesian and Tahitian meteorological readings. J Climate 11:2325–2339CrossRefGoogle Scholar
  28. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. B Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  29. McGowan JA, Cayan DR, Dorman LM (1998) Climate-ocean variability and ecosystem response in the Northeast Pacific. Science 281 210 doi:  10.1126/science.281.5374.210
  30. Neef LJ, Matthes K (2012) Comparison of Earth rotation excitation in data-constrained and unconstrained atmosphere models. J Geophys Res 117:D02107. doi: 10.1029/2011JD016555 CrossRefGoogle Scholar
  31. Newmann M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific Decadal Oscillation. J Climate 16:3853–3857CrossRefGoogle Scholar
  32. Reynolds RW, Rayner NA, Smith NA, Stokes DC, Wang DC (2002) An improved in situ and satellite SST analysis for climate. J Climate 15:1609–1625CrossRefGoogle Scholar
  33. Ropelewski CF, Jones PD (1987) An extension of the Tahiti-Darwin Southern Oscillation Index. Mon Weather Rev 115:2161–2165CrossRefGoogle Scholar
  34. Tzanis C, Varotsos C, Viras L (2008) Impacts of the solar eclipse of 29 March 2006 on the surface ozone concentration, the solar ultraviolet radiation and the meteorological parameters at Athens, Greece. Atmos Chem Phys 8:425–430CrossRefGoogle Scholar
  35. Varotsos C (1987) Quasi-stationary planetary waves and temperature reference atmosphere. Meteorol Atmos Phys 37:297–299CrossRefGoogle Scholar
  36. Varotsos C (1989) Connections between the 11-year solar cycle, the QBO and total ozone—comments. J Atmos Terr Phys 51:367–370CrossRefGoogle Scholar
  37. Varotsos C (2002) The southern hemisphere ozone hole split in 2002. Environ Sci Pollut R 9:375–376CrossRefGoogle Scholar
  38. Varotsos C (2005a) Power-law correlations in column ozone over Antarctica. Int J Remote Sens 26:3333–3342CrossRefGoogle Scholar
  39. Varotsos C (2005b) Airborne measurements of aerosol, ozone, and solar ultraviolet irradiance in the troposphere. J Geophys Res 110:10. doi: 10.1029/2004JD005397
  40. Varotsos C, Kirk-Davidoff D (2006) Long-memory processes in ozone and temperature variations at the region 60 degrees S–60 degrees N. Atmos Chem Phys 6:4093–4100CrossRefGoogle Scholar
  41. Varotsos C, Kalabokas P, Chronopoulos G (1994) Association of the laminated vertical ozone structure with the lower stratospheric circulation. J Appl Meteorol 33:473–476CrossRefGoogle Scholar
  42. Varotsos CA, Chronopoulos GJ, Katsikis S, Sakellariou NK (1995) Further evidence of the role of air pollution on solar ultraviolet radiation reaching the ground. Int J Remote Sens 16:1883–1886CrossRefGoogle Scholar
  43. Varotsos CA, Ondov JM, Cracknell AP, Efstathiou MN, Assimakopoulos MN (2006) Long-range persistence in global Aerosol Index dynamics. Int J Remote Sens 27:3593–3603Google Scholar
  44. Varotsos C, Assimakopoulos MN, Efstathiou M (2007) Technical note: Long-term memory effect in the atmospheric CO2 concentration at Mauna Loa. Atmos Chem Phys 7:629–634Google Scholar
  45. Varotsos C, Efstathiou M, Tzanis C (2009a) Scaling behaviour of the global tropopause. Atmos Chem Phys 9:677–683CrossRefGoogle Scholar
  46. Varotsos C, Tzanis C, Cracknell A (2009b) The enhanced deterioration of the cultural heritage monuments due to air pollution. Environ Sci Pollut R 16:590–592Google Scholar
  47. Varotsos PA, Sarlis NV, Skordas ES (2003a) Long-range correlations in the electric signals that precede rupture: further investigations. Phys Rev E. doi: 10.1103/PhysRevE.67.021109
  48. Varotsos PA, Sarlis NV, Skordas ES (2003b) Attempt to distinguish electric signals of a dichotomous nature. Phys Rev E. doi: 10.1103/PhysRevE.68.031106
  49. Weickmann KM, Robinson WA, Penland MC (2000) Stochastic and oscillatory forcing of global atmospheric angular momentum. J Geophys Res 105:15543–15557CrossRefGoogle Scholar
  50. Woolhiser DA (2008) Combined effects of the Southern Oscillation Index and the Pacific Decadal Oscillation on a stochastic daily precipitation model. J Climate 21:1139–1152CrossRefGoogle Scholar
  51. Xue Y, Ai J, Wan W, Guo H, Li Y, Wang Y, Guang J, Mei L, Xu H (2011) Grid-enabled high-performance quantitative aerosol retrieval from remotely sensed data. Comput Geosci-UK 37:202–206CrossRefGoogle Scholar
  52. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Climate 10:1004–1020CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Climate Research Group, Division of Environmental Physics and Meteorology, Faculty of PhysicsUniversity of AthensAthensGreece

Personalised recommendations