Theoretical and Applied Climatology

, Volume 113, Issue 1–2, pp 1–15 | Cite as

The climatic characteristics of extreme precipitations for short-term intervals in the watershed of Lake Maggiore

  • Helmi SaidiEmail author
  • Marzia Ciampittiello
  • Claudia Dresti
  • Giorgio Ghiglieri
Original Paper


Alpine and Mediterranean areas are undergoing a profound change in the typology and distribution of rainfall. In particular, there has been an increase in consecutive non-rainy days, and an escalation of extreme rainy events. The climatic characteristic of extreme precipitations over short-term intervals is an object of study in the watershed of Lake Maggiore, the second largest freshwater basin in Italy (located in the north-west of the country) and an important resource for tourism, fishing and commercial flower growing. The historical extreme rainfall series with high-resolution from 5 to 45 min and above: 1, 2, 3, 6, 12 and 24 h collected at different gauges located at representative sites in the watershed of Lake Maggiore, have been computed to perform regional frequency analysis of annual maxima precipitation based on the L-moments approach, and to produce growth curves for different return-period rainfall events. Because of different rainfall-generating mechanisms in the watershed of Lake Maggiore such as elevation, no single parent distribution could be found for the entire study area. This paper concerns an investigation designed to give a first view of the temporal change and evolution of annual maxima precipitation, focusing particularly on both heavy and extreme events recorded at time intervals ranging from few minutes to 24 h and also to create and develop an extreme storm precipitation database, starting from historical sub-daily precipitation series distributed over the territory. There have been two-part changes in extreme rainfall events occurrence in the last 23 years from 1987 to 2009. Little change is observed in 720 min and 24-h precipitations, but the change seen in 5, 10, 15, 20, 30, 45, 60, 120, 180 and 360 min events is significant. In fact, during the 2000s, growth curves have flattened and annual maxima have decreased.


Annual Maximum Homogeneous Region Generalise Extreme Value Extreme Rainfall Regional Frequency Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was carried out as part of the Strategie di Adattamento al Cambiamento Climatico (STRADA) project, funded under the Cross-Border Cooperation Programme INTERREG 2007–2013 Italy–Switzerland. We are grateful to the anonymous reviewers whose suggestions allowed us to improve the presentation of our results. We would like to thank Mrs. Sandra Spence for the careful language revision of the manuscript.


  1. Adamowski K (2000) Regional analysis of annual maximum and partial duration flood data by non parametric and L-moment methods. J Hydrol 229:219–231CrossRefGoogle Scholar
  2. Adamowski K, Alila Y, Pilon JP (1996) Regional rainfall distribution for Canada. Atmos Res 42:75–88CrossRefGoogle Scholar
  3. Alila Y (1994) A regional approach for estimating design storms in Canada. Ph.D. thesis, Civ. Eng. Dep. Univ. of Ottawa, Ontario, CanadaGoogle Scholar
  4. Alila Y (1999) A hierarchical approach for the regionalization of precipitation annual maxima in Canada. J Geophys Res 104:31645–31655CrossRefGoogle Scholar
  5. Arnell NW, Gabriele S (1988) The performance of the two-component extreme value distribution in regional flood frequency analysis. Water Resour Res 24:879–887CrossRefGoogle Scholar
  6. Aronica G, Cannarozzo M, Noto L (2002) Investigating the changes in extreme rainfall series recorded in an urbanised area. Water Sci Technol 45(2):49–54Google Scholar
  7. Barbanti L (1994) Osservazioni sul Lago Maggiore. Circolo del Pallanzotto, Verbania, p 113Google Scholar
  8. Brunetti M, Maurizio M, Nanni T, Navarra A (2002) Droughts and extreme events in regional daily Italian precipitation series. Int J Climatol 22:543–558. doi: 10.1002/joc.751 CrossRefGoogle Scholar
  9. Brunetti M, Maugeri M, Monti F, Nanni T (2006) Temperature and precipitation variability in Italy in the last centuries from homogenised instrumental time series. Int J Climatol 26:345–381. doi: 10.1002/joc.1251 CrossRefGoogle Scholar
  10. Caporali E, Cavigli E, Petrucci A (2008) The index in the regional frequency analysis of extreme events in Tuscany (Italy). Environmetrics 19:714–724CrossRefGoogle Scholar
  11. Casas MC, Herrero M, Nunyerola M, Pons X, Rodriguez R, Rius A, Redano A (2007) Analysis and objective mapping of extreme daily rainfall in Catalonia. Int J Climatol 27:399–409. doi: 10.1002/joc.1402 CrossRefGoogle Scholar
  12. Cati L (1981) Idrografia e idrologia del Po. Ministero dei Lavori Pubblici, Servizio Idrografico, oma, pp 40–158Google Scholar
  13. Ciampittiello M (1999) I livelli del Lago Maggiore: una grande risorsa da gestire un problema da affrontare. Alberti Editore: pp 203Google Scholar
  14. Ciampittiello M (2009) Le precipitazioni atmosferiche nell’areale del Lago Maggiore, in: Atti del Convegno “I laghi Maggiore e di Lugano: quale futuro?”, Gazzada Schianno (Varese), Italia, Commissione Internazionale per la Protezione delle Acque Italo-Svizzere, 18 ottobre 2008, pp 82–89Google Scholar
  15. Ciampittiello M, Rolla A (2008) Indagini sul bacino imbrifero. Caratteristiche idrologiche. Ricerche sull'evoluzione del Lago Maggiore. Aspetti limnologici. Programma quinquennale 2003–2007. Campagna 2007 e Rapporto quinquennale 2003–2007. Commissione Internazionale per la protezione delle acque italo-svizzere (Ed.): 5–12Google Scholar
  16. Contessini F (1956) Impianti idroelettrici, ed. Politecnica C. Tamburini, MilanoGoogle Scholar
  17. Crisci A, Gozzini B, Meneguzzo F, Pagliara S, Maracchi G (2002) Extreme rainfall in a changing climate: regional analysis and hydrological implications in Tuscany. Hydrolog Process 16:1261–1274. doi: 10.1002/hyp.1061 CrossRefGoogle Scholar
  18. Di Baldassarre G, Castellarin A, Brath A (2006) Relationships between statistics of rainfall extremes and mean annual precipitation: an application for design-storm estimation in northern central Italy. Hydrol Earth Syst Sci 10:589–601CrossRefGoogle Scholar
  19. Djerboua A, Duband D, Bois P (2004) Estimation des lois des précipitations extrêmes à partir de données journalières complètes. La Houille Blanche 3:65–74CrossRefGoogle Scholar
  20. Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81(3):417–425CrossRefGoogle Scholar
  21. Flower HJ, Kilsby CG (2003) A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000. Int J Climatol 23:1303–1334. doi: 10.1002/joc.943 Google Scholar
  22. Frei C, Schär C (1998) A precipitation climatology of the Alps from the high-resolution rain-gauge observations. Int J Climatol 18:873–900CrossRefGoogle Scholar
  23. Gabriele S, Arnell NW (1991) A hierarchical approach to regional frequency analysis. Water Resour Res 27:1281–1289CrossRefGoogle Scholar
  24. Gabriele S, Iiritano G (1994) Alcune aspetti teorici ed applicativi nella regionalizzazione delle piogge con il modello TCEV. CNR-Gruppo Nazionale per la Difesa dalla Catastrofi Idrologiche. Linea di ricerca n.1 U.O. 1.4 Publicazione n. 1089Google Scholar
  25. Gajic-Capka M (1990) Maximum precipitation for different short-term intervals. Theor Appl Climatol 41:33–39CrossRefGoogle Scholar
  26. Gajic-Capka M (1991) Short-term precipitation maxima in different precipitation climate zones of Croatia, Yoguslavia. Int J Climatol 11:677–687CrossRefGoogle Scholar
  27. Greenwood JA, Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form. Water Resour Res 15(5):1049–1054CrossRefGoogle Scholar
  28. Guttman NB (1993) The use of L-moments in the determination of regional precipitation climates. J Climate 6:2309–2325CrossRefGoogle Scholar
  29. Guttman NB, Hosking JRM, Wallis JR (1993) Regional precipitation quantile values for the continental united states computed from L-moments. J Climate 6:2326–2340CrossRefGoogle Scholar
  30. Hosking JRM (1990) L-moments: analysis and estimation of distribution using linear combinations of order statistics. J Roy Stat Soc B 52:105–124Google Scholar
  31. Hosking JRM, Wallis JR (1993) Some statistics useful in regional frequency analysis. Water Resour Res 29:271–281CrossRefGoogle Scholar
  32. Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. Kumar R, Chatterjee C (2005) Regional flood frequency analysis using L-moments for north Brahmaputra region of India. J Hydrolog Eng 10(1):1–7CrossRefGoogle Scholar
  34. Kysely J, Picek J, Huth R (2005) Regional analysis of extreme precipitation events in the Czech republic. 4th Conference on Extreme Value Analysis: Probabilistic and Statistical Models and their Applications. Gothenburg. August 15–19, 2005.Google Scholar
  35. Lee SH, Maeng SJ (2003) Frequency analysis of extreme rainfall using L-moment. Irrigat Drain 52:219–230CrossRefGoogle Scholar
  36. Lin GF, Chen LH (2005) Identification of homogeneous regions for regional frequency analysis using the self-organizing map. J Hydrol 324:1–9. doi: 10.1016/j.jhydrol.2005.09.009 CrossRefGoogle Scholar
  37. Modarres R, Sarhadi A (2011) Statistically-based regionalisation of rainfall climates of Iran. Global Planet Change 75:67–75. doi: 10.1016/j.gloplacha.2010.10.009 CrossRefGoogle Scholar
  38. Molnar P, Burlando P (2008) Variability in the scale properties of high-resolution precipitation data in the Alpine climate of Switzerland. Water Resour Res 44:W10404. doi: 10.1029/2007WR006142 CrossRefGoogle Scholar
  39. Noto LV, La Loggia G (2009) Use of L-moments approach for regional flood frequency analysis in Sicily, Italy. Water Resour Manag 23(11):2207–2229. doi: 10.1007/s11269-008-9378-x CrossRefGoogle Scholar
  40. Onibon H, Ouarda TBMJ, Barbet M, St-Hilaire A, Bobée B, Bruneau P (2004) Analyse fréquentielle régionale des précipitations journalières maximales annuelles au Québec, Canada. Hydrolog Sci J 49(1):717–735Google Scholar
  41. Pal I, Al-Tabbaa A (2009) Trends in seasonal precipitation extremes—an indicator of ‘climate change’ in Kerala, India. J Hydrology 367(1–2):62–69CrossRefGoogle Scholar
  42. Park JS, Jung HS, Kim RS, Oh JH (2001) Modelling summer extreme rainfall over the Korean peninsula using Wakeby distribution. Int J Climatol 21:1371–1384. doi: 10.1002/joc.701 CrossRefGoogle Scholar
  43. Provenghi R (2002) Evento alluvionale 12–17 ottobre 2000 nel bacino del Lago Maggiore. Relazione di Tirocinio per il Master in Tutela e Pianificazione della Qualità delle Acque Superficiali presso l’Università degli Studi di Pavia. PersonaleGoogle Scholar
  44. Rahnama MB, Rostami R (2007) Halil-river basin regional flood frequency analysis based on L-moment approach. Int J Agric Res 2:261–267CrossRefGoogle Scholar
  45. Rossi F, Fiorentino M, Versace P (1984) Two-component extreme value distribution for flood frequency analysis. Water Resour Res 20:847–856CrossRefGoogle Scholar
  46. Smithers JC, Schulze RE (2001) A methodology for the estimation of short duration design storms in South Africa using a regional approach based on L-moments. J Hydrol 241:42–52CrossRefGoogle Scholar
  47. Vaes G, Willems P, Berlamont J (2002) 100 Years of Belgian rainfall: are there trends? Water Sci Technol 45(2):55–61Google Scholar
  48. Yurekli K, Modarres R, Ozturk F (2009) Regional maximum rainfall estimation for Cekerek Watershed by L-moments. Meteorol Appl 16:435–444. doi: 10.1002/met.139 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Helmi Saidi
    • 1
    Email author
  • Marzia Ciampittiello
    • 1
  • Claudia Dresti
    • 1
  • Giorgio Ghiglieri
    • 2
    • 3
  1. 1.The National Research Council—Institute of Ecosystem StudyVerbaniaItaly
  2. 2.Department of Earth ScienceCagliari UniversityCagliariItaly
  3. 3.Desertification Research Group (NRD)Sassari UniversitySassariItaly

Personalised recommendations