Theoretical and Applied Climatology

, Volume 110, Issue 4, pp 509–516 | Cite as

Snow-albedo feedback and Swiss spring temperature trends

  • S. C. ScherrerEmail author
  • P. Ceppi
  • M. Croci-Maspoli
  • C. Appenzeller
Special Issue


We quantify the effect of the snow-albedo feedback on Swiss spring temperature trends using daily temperature and snow depth measurements from six station pairs for the period 1961–2011. We show that the daily mean 2-m temperature of a spring day without snow cover is on average 0.4 °C warmer than one with snow cover at the same location. This estimate is comparable with estimates from climate modelling studies. Caused by the decreases in snow pack, the snow-albedo feedback amplifies observed temperature trends in spring. The influence is small and confined to areas around the upward-moving snow line in spring and early summer. For the 1961–2011 period, the related temperature trend increases are in the order of 3–7 % of the total observed trend.


Snow Cover Temperature Trend Regional Climate Model Snow Depth Station Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309. doi: 10.1038/nature04141 CrossRefGoogle Scholar
  2. Barry RG (2008) Mountain weather and climate, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. Barry RG, Chorley RJ (2003) Atmosphere, weather and climate, 8th edn. Routledge, LondonGoogle Scholar
  4. Beck C, Jacobeit J, Jones PD (2007) Frequency and within-type variations of large scale circulation types and their effects on low-frequency climate variability in Central Europe since 1780. Int J Climatol 27:473–491CrossRefGoogle Scholar
  5. Begert M, Schlegel T, Kirchhofer, W (2005) Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int J Climatol 25:65–80. doi: 10.1002/joc.1118 Google Scholar
  6. Ceppi P, Scherrer SC, Fischer AM, Appenzeller C (2012) Revisiting Swiss temperature trends 1959–2008. Int J Climatol 32:203–213. doi: 10.1002/joc.2260 CrossRefGoogle Scholar
  7. Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Change 59:1–4CrossRefGoogle Scholar
  8. Flanner MG, Shell KM, Barlage M, Perovich DK, Tschudi MA (2011) Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nature Geosci 4(3):151–155. doi: 10.1038/ngeo1062 CrossRefGoogle Scholar
  9. Fyfe JC, Flato GM (1999) Enhanced climate change and its detection over the rocky mountains. J Clim 12:230–243CrossRefGoogle Scholar
  10. Giorgi F, Hurrell JW, Marinucci MR (1997) Elevation dependency of the surface climate change signal: a model study. Clim Change 10:288–296Google Scholar
  11. Groisman PY, Karl TR, Knight RW (1994) Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science 263:198–200. doi: 10.1126/science.263.5144.198 CrossRefGoogle Scholar
  12. Hall A (2004) The role of surface albedo feedback in climate. J Clim 17:1550–1568CrossRefGoogle Scholar
  13. Holland MM, Bitz CM (2003) Polar amplification of climate change in the coupled model intercomparison project. Clim Dyn 21:221–232CrossRefGoogle Scholar
  14. Im E-S, Coppola E, Giorgi F, Bi X (2010) Local effects of climate change over the Alpine region: a study with a high resolution regional climate model with a surrogate climate change scenario. Geophys Res Lett 37:L05704. doi: 10.1029/2009GL041801 CrossRefGoogle Scholar
  15. Kotlarski S, Bosshard T, Lüthi D, Pall P, Schär C (2011) Elevation gradients of European climate change in the regional climate model COSMO-CLM. Clim Change. doi: 10.1007/s10584-011-0195-5
  16. Marty C (2008) Regime shift of snow days in Switzerland. Geophys Res Lett 35:L12501. doi: 10.1029/2008GL033998 CrossRefGoogle Scholar
  17. Oke TR (1987) Boundary layer climates. Routledge, New YorkGoogle Scholar
  18. Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New YorkGoogle Scholar
  19. Pepin NC, Lundquist JD (2008) Temperature trends at high elevations: patterns across the globe. Geophys Res Lett 35:L14701. doi: 10.1029/2008GL034026 CrossRefGoogle Scholar
  20. Pepin NC, Daly C, Lundquist J (2011) The influence of surface versus free air decoupling on temperature trend patterns in the western United States. J Geophys Res 116:D10109. doi: 10.1029/2010JD014769 CrossRefGoogle Scholar
  21. Philipp A, Bartholy J, Beck C, Erpicum M, Esteban P, Huth R, James P, Jourdain S, Krennert T, Lykoudis S, Michalides S, Pianko K, Post P, Rassilla Álvarez D, Schiemann R, Spekat A, Tymvios FS (2010) COST733CAT—a database of weather and circulation type classifications. Phys Chem Earth 35(9–12):360–373Google Scholar
  22. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17(4):347–348. doi: 10.1127/0941-2948/2008/0309 CrossRefGoogle Scholar
  23. Scherrer SC, Appenzeller C, Laternser M (2004) Trends in Swiss Alpine snow days: the role of local- and large-scale climate variability. Geophys Res Lett 31. doi: 10.1029/2004GL020255
  24. Scherrer SC, Wüthrich C, Croci-Maspoli M, Weingartner R, Appenzeller C (2011) Snow variability in the Swiss Alps 1864-2009. Int. J. Clim. (in revision)Google Scholar
  25. Schöner W, Auer I, Böhm R (2009) Long term trend of snow depth at Sonnblick (Austrian Alps) and its relation to climate change. Hydrol Process 23:1052–1063. doi: 10.1002/hyp.7209 CrossRefGoogle Scholar
  26. van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UKGoogle Scholar
  27. Vincent LA, Zhang X, Bonsal BR, Hogg WD (2002) Homogenization of daily temperature over Canada. J Clim 15:1322–1334CrossRefGoogle Scholar
  28. Whiteman CD (2000) Mountain meteorology. Fundamentals and applications. Oxford University Press, New YorkGoogle Scholar
  29. Wilks DS (2006) Statistical methods in the atmospheric sciences, second edition. Academic, San Diego, International Geophysics Series, vol. 91Google Scholar
  30. Wüthrich C (2008) Lange Schneemessreihen der Schweiz. Diploma Thesis. Geographisches Institut Universität Bern und MeteoSchweiz Zürich, GermanGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • S. C. Scherrer
    • 1
    Email author
  • P. Ceppi
    • 2
  • M. Croci-Maspoli
    • 1
  • C. Appenzeller
    • 1
  1. 1.Climate DivisionFederal Office of Meteorology and Climatology MeteoSwissZürichSwitzerland
  2. 2.Department of Atmospheric SciencesUniversity of WashingtonSeattleUSA

Personalised recommendations