Theoretical and Applied Climatology

, Volume 110, Issue 4, pp 645–658 | Cite as

The climate tourism potential of Alpine destinations using the example of Sonnblick, Rauris and Salzburg

  • Andreas Matzarakis
  • Martin Hämmerle
  • Elisabeth Koch
  • Ernest Rudel
Special Issue


The climate tourism potential of a region can be described by methods used in human biometeorology and applied climatology. Frequency analyses based on complex thermal bioclimatic indices (e.g. physiologically equivalent temperature) and diagrams of precipitation patterns based on thresholds offer new approaches of visualisation. An integral approach for tourism climatologic analyses is provided by the climate–tourism/transfer–information–scheme that also bases on frequency distributions of relevant factors and parameters which are important for a destination. The knowledge about the vertical variability of tourism climatologic factors is of high importance because of the several kinds of tourism activities affected by weather. The same holds for a quantification of extreme events like heat waves because of their possible effects on health and recreation over a year's course. The results show that the vertical gradient of bioclimatic and tourism-related parameters can be of value when developing strategies of adaption to climate change.



Tourklim project was funded by ZAMG and the Austrian Federal Ministry for Science and Research.


  1. Amelung B, Blazejczyk K, Matzarakis A (eds) (2007) Climate change and tourism: assessment and coping strategies. Maastricht–Warsaw–Freiburg, ISBN: 978-00-023716-4Google Scholar
  2. Barbiere EB (1981) O Fator Climático nos Sistemas Territoriais de Recreação. Revista brasileira de geographia XLIII(2):145–265Google Scholar
  3. Bartels C, Barth M, Burandt S, Carstensen I, Endler C, Kreilkamp E, Matzarakis A, Möller A, Schulz S (2009) Sich mit dem Klima wandeln! Ein Tourismus-Klimafahrplan für Tourismusdestinationen. Herausgeber: Forschungsprojekt KUNTIKUM—Klimatrends und nachhaltige Tourismusentwicklung in Küsten- und Mittelgebirgsregionen. Leuphana Universität Lüneburg und Albert–Ludwigs-Universität FreiburgGoogle Scholar
  4. Beniston M (1997) Variations of snow depth and duration in the Swiss Alps over the last 50 years: links to changes in large-scale climatic forcing. Clim Change 36:281–300CrossRefGoogle Scholar
  5. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31CrossRefGoogle Scholar
  6. Besancenot J-P (1989) Climat et tourisme. Masson: Collection Géographie, Paris, ISBN 2 225 818 169Google Scholar
  7. Çalışkan O, Çiçek I, Matzarakis A (2011) The climate and bioclimate of Bursa (Turkey) from the perspective of tourism. Theor Appl Climatol 107(3–4):417–425Google Scholar
  8. de Freitas CR (2003) Tourism climatology: evaluating environmental information for decision making and business planning in the recreation and tourism sector. Int J Biometeor 48:45–54CrossRefGoogle Scholar
  9. de Freitas CR, Scott D, McBoyle G (2008) A second generation climate index for tourism (CIT): specification and verification. Int J Biometeorol 52:399–407CrossRefGoogle Scholar
  10. Endler C, Matzarakis A (2011a) Climatic and tourism related changes in the Black Forest: winter season. Int J Biometeorol 55:339–351CrossRefGoogle Scholar
  11. Endler C, Matzarakis A (2011b) Analysis of high resolution simulations for the Black Forest region from a point of view of tourism climatology—a comparison between two regional climate models (REMO and CLM). Theor Appl Climatol 103:427–440CrossRefGoogle Scholar
  12. Endler C, Matzarakis A (2011c) Climate and tourism in the Black Forest during the warm season. Int J Biometeorol 55:173–186CrossRefGoogle Scholar
  13. Endler C, Oehler K, Matzarakis A (2010) Vertical gradient of climate change and climate tourism conditions in the Black Forest. Int J Biometeorol 54:45–46CrossRefGoogle Scholar
  14. Fanger PO (1972) Thermal comfort. McGraw Hill, New YorkGoogle Scholar
  15. Fleischhacker V, Formayer H, Seisser O, Wolf-Eberl S, Kromp-Kolb H (2009) Auswirkungen des Klimawandels auf das künftige Reiseverhalten im österreichischen Tourismus. Am Beispiel einer repräsentativen Befragung der österreichischen Urlaubsreisenden. Forschungsbericht im Auftrag des Bundesministeriums für Wirtschaft, Familie und JugendGoogle Scholar
  16. Gagge AP, Fobelets AP, Berglund LG (1986) A standard predictive index of human response of the thermal environment. ASHRAE Trans 92:709–731Google Scholar
  17. Gates AD (1975) Le climat des Maritimes en fonction du tourisme et des loisirs de plein air. Environment Canada, Toronto, p 135Google Scholar
  18. Gössling S, Hall CM (2006) Uncertainties in predicting tourist travel flows based on models. Clim Chang 79(3–4):163–173, Editorial EssayCrossRefGoogle Scholar
  19. Gössling S, Hall CM, Peeters P, Scott D (2010) The future of tourism: a climate change mitigation perspective. Tour Recreat Res 35(2):119–130Google Scholar
  20. Hall CM (2008) Tourism and climate change: knowledge gaps and issues. Tour Recreat Res 33:339–350Google Scholar
  21. Hall CM (2010) Tourism and biodiversity: more significant than climate change? J Herit Tour 5(4):253–266CrossRefGoogle Scholar
  22. Hall CM, Higham J (eds) (2005) Tourism, recreation and climate change. Aspects in tourism. Channel View, ClaverdonGoogle Scholar
  23. Höppe P (1993) Heat balance modelling. Experientia 49:741–746CrossRefGoogle Scholar
  24. Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75CrossRefGoogle Scholar
  25. Jopp R, DeLacy T, Mair J (2010) Developing a framework for regional destination adaptation to climate change. Curr Issues Tour 13(6):591–605CrossRefGoogle Scholar
  26. KLIWA (2006) Regionale Klimaszenarien für Süddeutschland—Abschätzung der Auswirkung auf den Wasserhaushalt. KLIWA Berichte, Heft, 9Google Scholar
  27. Lin T-P, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52:281–290CrossRefGoogle Scholar
  28. Matzarakis A (2006) Weather and climate related information for tourism. Tour Hosp Plan Dev 3:99–115CrossRefGoogle Scholar
  29. Matzarakis A (2007) Assessment method for climate and tourism based on daily data. In: Matzarakis A, de Freitas CR, Scott D (eds) Developments in tourism climatology. Commission Climate, Tourism and Recreation, International Society of BiometeorologyGoogle Scholar
  30. Matzarakis A (2010) Climate change: temporal and spatial dimension of adaptation possibilities at regional and local scale. In: Schott C (ed) Tourism and the implications of climate change: issues and actions. Emerald Group Publishing. Bridging Tourism Theory and Practice, vol. 3, 237–259Google Scholar
  31. Matzarakis A, Amelung B (2008) Physiologically equivalent temperature as indicator for impacts of climate change on thermal comfort of humans. In: Thomson MC et al (eds) Seasonal forecasts, climatic change and human health. Advances in global change research 30. Springer, Berlin, pp 161–172CrossRefGoogle Scholar
  32. Matzarakis A, de Freitas CR (2001) Proceedings of the first international workshop on climate, tourism and recreation. International Society of Biometeorology, Commission on Climate Tourism and Recreation. December 2001.
  33. Matzarakis A, Endler C (2010) Adaptation of thermal bioclimate under climate change conditions—the example of physiologically equivalent temperature in Freiburg, Germany. Int J Biometeorol 54:479–483CrossRefGoogle Scholar
  34. Matzarakis A, Mayer H (1996) Another kind of environmental stress: thermal stress. WHO Newsl 18:7–10Google Scholar
  35. Matzarakis A, Tinz B (2008) Tourismus an der Küste sowie in Mittel und Hochgebirge: Gewinner und Verlierer. In: Lozán JZ, Graßl H, Jendritzky G, Karbe L, Reise L (eds) Warnsignal Klima: Gesundheitsrisiken Gefahren für Menschen, Tiere und Pflanzen. GEO/Wissenschaftliche Auswertungen, pp 247–252Google Scholar
  36. Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeor 43:76–84CrossRefGoogle Scholar
  37. Matzarakis A, de Freitas C, Scott D (eds) (2004) Advances in tourism climatology. Berichte des Meteorologischen Institutes der Universität Freiburg Nr. 12Google Scholar
  38. Matzarakis A, de Freitas CR, Scott D (eds) (2007a) Developments in tourism climatology. ISBN 978-3-00-024110-9Google Scholar
  39. Matzarakis A, Rutz F, Mayer H (2007b) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334CrossRefGoogle Scholar
  40. Matzarakis A, Rudel E, Zygmuntowski M, Koch E (2010a) Bioclimatic maps for tourism purposes using GIS techniques. Phys Chem Earth 35:57–62CrossRefGoogle Scholar
  41. Matzarakis A, Rutz F, Mayer H (2010b) Modelling radiation fluxes in simple and complex environments—basics of the RayMan model. Int J Biometeorol 54:131–139CrossRefGoogle Scholar
  42. Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49CrossRefGoogle Scholar
  43. Mieczkowski Z (1985) The tourism climate index: a method for evaluating world climates for tourism. Can Geogr 29:220–233CrossRefGoogle Scholar
  44. OECD (2007) Climate change in the European Alps—adapting winter tourism and natural hazards management. Hrsg. von S. Agrawala (eds) OECD, ParisGoogle Scholar
  45. Sauter T, Weitzenkamp C, Schneider C (2010) Spatio-temporal prediction of snow cover in the Black Forest mountain range using remote sensing and a recurrent neural network. Int J Climatol 30:2330–2341CrossRefGoogle Scholar
  46. Schmidt P, Steiger R, Matzarakis A (2012) Artificial snowmaking possibilities and climate change based on regional climate modeling in the Southern Black Forest. Meteorologische Zeitschrift 21:167–172Google Scholar
  47. Schneider C, Schönbein J (2006) Klimatologische Analyse der Schneesicherheit und Beschneibarkeit von Wintersportgebieten in deutschen Mittelgebirgen. Schriftenreihe Natursport und Ökologie. Deutsche Sporthochschule: Köln (ed), 111Google Scholar
  48. Schneider C, Schönbein J, Ketzler G, Buttstädt M (2006) Winterklima, Klimawandel und Schneesport in Deutschen Mittelgebirgen. FdSnow 29:2–11Google Scholar
  49. Schönbein J, Schneider C (2005) Zur Klimatologie der winterlichen Schneedecke deutscher Mittelgebirge. GEOÖKO 26:197–216Google Scholar
  50. Schott C (ed) (2010) Tourism and the implications of climate change: issues and actions. Bridging tourism theory and practice vol. 3. Emerald Group, BingleyGoogle Scholar
  51. Scott D (2006) Global environmental change and mountain tourism. In: Gössling S, Hall CM (eds) Tourism and global environmental change. Routledge, LondonGoogle Scholar
  52. Scott D (2011) Why sustainable tourism must address climate change. J Sustain Tour 19(1):17.34CrossRefGoogle Scholar
  53. Scott D, Lemieux C (2010) Weather and climate information for tourism. Proceedia Environ Sci 1:146–183CrossRefGoogle Scholar
  54. Scott D, Matthews L (2011) Climate, tourism & recreation: a bibliography—2010 edition. Department of Geography and Environmental Management, University of Waterloo, WaterlooGoogle Scholar
  55. Scott D, McBoyle G (2007) Climate change adaptation in the ski industry. Mitig Adapt Strateg Glob Chang 12(8):1411–1431CrossRefGoogle Scholar
  56. Scott D, McBoyle G, Mills B (2003) Climate change and the skiing industry in southern Ontario (Canada). Clim Res 23:171–181CrossRefGoogle Scholar
  57. Scott D, McBoyle G, Minogue A, Mills B (2006a) Climate change and the sustainability of ski-based tourism in Eastern North America: a reassessment. J Leis Res 14:376–398Google Scholar
  58. Scott D, Jones B, McBoyle G (2006b) Climate, tourism and recreation: a bibliography—1936 to 2006. University of Waterloo, WaterlooGoogle Scholar
  59. Scott D, de Freitas CR, Matzarakis A (2009) Adaptation in the tourism and recreation sector. In: McGregor GR, Burton I, Ebi K (eds) Biometeorology for adaptation to climate variability and change. Springer, Berlin, pp 171–194CrossRefGoogle Scholar
  60. Serquet G, Rebetez M (2011) Climatic change, relationship between tourism demand in the Swiss alps and hot summer air temperatures associated with climate change. Clim Change 108:291–300. doi: 10.1007/s10584-010-0012-6 Google Scholar
  61. Simpson MC, Gössling S, Scott D, Hall CM, Gladin E (2008) Climate change adaptation and mitigation in the tourism sector: frameworks, tools and practices. UNEP, University of Oxford, UNWTO, WMO, ParisGoogle Scholar
  62. Steiger R (2010) The impact of climate change on ski season length and snowmaking requirements in Tyrol, Austria. Clim Res 43:251–262CrossRefGoogle Scholar
  63. Steiger R (2011a) The impact of climate change on ski touristic demand using an analogue approach. In: Weiermair K, Pechlaner H, Strobl A, Elmi M (eds) Coping with global climate change. Strategies, policies and measures for the tourism industry. Innsbruck University Press, InnsbruckGoogle Scholar
  64. Steiger R (2011b) The impact of snow scarcity on ski tourism. An analysis of the record warm season 2006/07 in Tyrol (Austria). Tourism Rev 66(3):4–13CrossRefGoogle Scholar
  65. Steiger R, Mayer M (2008) Snowmaking and climate change. Future options for snow production in Tyrolean ski resorts. Mt Res Dev 28:292–298. doi: 10.1659/mrd.0978 CrossRefGoogle Scholar
  66. Stock M (2005) KLARA—Klimawandel, Auswirkungen, Risiken und Anpassung. PIK Report 99Google Scholar
  67. UNWTO–UNEP–WMO (2008) Climate change and tourism—responding to global challenges. UNWTO Madrid, SpainGoogle Scholar
  68. VDI (1998) Methods for the human biometeorological evaluation of climate and air quality for the urban and regional planning. Part I: climate. VDI guideline 3787. Part 2. Beuth, BerlinGoogle Scholar
  69. Wolfsegger C, Gössling S, Scott D (2008) Climate change risk appraisal in the Austrian ski industry. Tour Rev Int 12:13–23CrossRefGoogle Scholar
  70. Zaninovic K, Matzarakis A (2009) The biometeorological leaflet as a means conveying climatological information to tourists and the tourism industry. Int J Biometeorol 53:369–374CrossRefGoogle Scholar
  71. Zaninovic K, Matzarakis A, Cegnar T (2006) Thermal comfort trends and variability in the Croatian and Slovenian mountains. Meteorol Z 15:243–251CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Andreas Matzarakis
    • 1
  • Martin Hämmerle
    • 1
  • Elisabeth Koch
    • 2
  • Ernest Rudel
    • 2
  1. 1.Meteorological InstituteAlbert-Ludwigs-University FreiburgFreiburgGermany
  2. 2.Central Institute for Meteorology and GeodynamicsViennaAustria

Personalised recommendations