Advertisement

Theoretical and Applied Climatology

, Volume 111, Issue 3–4, pp 513–528 | Cite as

Parameterisation of incoming longwave radiation over glacier surfaces in the semiarid Andes of Chile

  • Shelley MacDonell
  • Lindsey Nicholson
  • Christophe Kinnard
Original Paper

Abstract

A good understanding of radiation fluxes is important for calculating energy, and hence, mass exchange at glacier surfaces. This study evaluates incoming longwave radiation measured at two nearby glacier stations in the high Andes of the Norte Chico region of Chile. These data are the first published records of atmospheric longwave radiation measurements in this region. Nine previously published optimised parameterisations for clear sky emissivity all produced results with a root mean square error (RMSE) ~20 W m−2 and bias within ±5 W m−2, which is inline with findings from other regions. Six optimised parameterisations for incoming longwave in all sky conditions were trialled for application to this site, five of which performed comparably well with RMSE on daytime data <18 W m−2 and bias within ±6 W m−2 when applied to the optimisation site and RMSE <20 W m−2 and bias within ±10 W m−2 when applied to the validation site. The parameterisation proposed by Mölg et al. (J Glaciol 55:292-302, 2009) was selected for use in this region. Incorporating the proposed elevation modification into the equation reduced the bias in the modelled incoming longwave radiation for the validation site. It was found that applying the parameterisation optimised in the original work at Kilimanjaro produced good results at both the primary and validation site in this study, suggesting that this formulation may be robust for different high mountain regions.

Keywords

Root Mean Square Error Cloud Cover Shortwave Radiation Glacier Surface Convective Storm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

SM was supported by FONDECYT Postdoctoral grant no. 3110053. We also thank the Barrick Gold Corporation for logistical support of this study as part of a glacier monitoring project in the semiarid Andes and the glaciology group at CEAZA for their help with the installation of the AWS’s. We thank two anonymous reviewers for their constructive criticism which greatly improved this manuscript.

References

  1. Aase JK, Idso SB (1978) A comparison of two formula types for calculating long-wave radiation from the atmosphere. Water Resour Res 14(4):623–625CrossRefGoogle Scholar
  2. Alados I, Foyo-Moreno I, Alados-Arboledas L (2012) Estimation of downwelling longwave irradiance under all-sky conditions. Int J Climatol 32(5):781–793. doi: 10.1002/joc.2307 CrossRefGoogle Scholar
  3. Ambach W (1974) The influence of clouds on the net radiation balance of a snow surface with high albedo. J Glaciol 13:73–84Google Scholar
  4. Ångström A (1918) A study if the radiation of the atmosphere. Smithson Misc Collect 65:1–159Google Scholar
  5. Box JE, Anderson PS, van den Broeke MR (2004) Automatic weather stations on glaciers: lessons to be learned extended abstracts. In Automatic Weather Stations on Glaciers, Pontresina. pp 1-22Google Scholar
  6. Brenning A (2005) Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of Central Chile (33–35°S). Permafrost Periglac 16(3):231–240. doi: 10.1002/ppp.528 CrossRefGoogle Scholar
  7. Brunt D (1932) Notes on radiation in the atmosphere. Q J R Meteorol Soc 58:389–420CrossRefGoogle Scholar
  8. Brutsaert W (1975) On a derivable formula for long-wave radiation from clear skies. Water Resour Res 11(5):742–744CrossRefGoogle Scholar
  9. Brutsaert WH (1982) Evaporation into the atmosphere: theory, history and applications. Kluwer Academic, DordrechtGoogle Scholar
  10. Campbell Scientific Inc (2011) Instruction manual: CNR 1 Net Radiometer Revision 5/11Google Scholar
  11. Charlock T, Herman BM (1976) Discussion of the Elsasser formulation for infrared fluxes. J Appl Meteorol 15:657–661CrossRefGoogle Scholar
  12. Cogley JG, Hock R, Rasmussen LA, Arendt AA, Bauder A, Braithwaite RJ, Jansson P, Kaser G, Möller M, Nicholson L, Zemp M (2011) Glossary of glacier mass balance and related terms, IHP-VII technical documents in hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, ParisGoogle Scholar
  13. Crawford TM, Duchon CE (1999) An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J Appl Meteorol 38(4):474–480CrossRefGoogle Scholar
  14. Duguay CR (1993) Radiation modelling in mountainous terrain review and status. Mt Res Dev 13:339–357CrossRefGoogle Scholar
  15. Dilley AC, O’Brien DM (1998) Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water. Q J R Meteorol Soc 124A:1391–1401Google Scholar
  16. Fassnacht SR, Snelgrove KR, Soulis ED (2001) Daytime long-wave radiation approximation for physical hydrological modelling of snowmelt: a case study of southwestern Ontario. IAHS Publ 270:279–286Google Scholar
  17. Favier V, Wagnon P, Chazarin J, Maisincho L, Coudrain A (2004) One-year measurements of surface heat budget on the ablation zone of Antizana Glacier 15. Ecuadorian Andes J Geophys Res 109:D18105. doi: 10.1029/2003JD004359 CrossRefGoogle Scholar
  18. Flerchinger GN, Xaio W, Marks D, Sauer TJ, Yu Q (2009) Comparison of algorithms for incoming atmospheric long-wave radiation. Water Resour Res 45:W03423. doi: 10.1029/2008WR007394 CrossRefGoogle Scholar
  19. Gabathuler M, Marty CA, Hanselmann KW (2001) Parameterization of incoming longwave radiation in high-mountain environments. Phys Geogr 22(2):99–114Google Scholar
  20. Georges C, Kaser G (2002) Ventilated and unventilated air temperature measurements for glacier-climate studies on a tropical high mountain site. J Geophys Res 107(D24):4775. doi: 10.1029/2002JD002503 CrossRefGoogle Scholar
  21. Granger RJ, Gray DM (1990) A net radiation model for calculating daily snowmelt in open environments. Nordic Hydrol 21(4–5):217–234Google Scholar
  22. Halldin S, Lindroth A (1992) Errors in net radiometry: comparison of six radiometer designs. J Atmos Ocean Technol 9(6):762–783CrossRefGoogle Scholar
  23. Hock R (2005) Glacier melt: a review of processes and their modelling. Prog Phys Geogr 29(3):362–391. doi: 10.1191/0309133305pp453ra CrossRefGoogle Scholar
  24. Hoffman MJ, Fountain AG, Liston GE (2008) Surface energy balance and melt thresholds over 11 years at Taylor Glacier, Antarctica. J Geophys Res 113(F04014). doi: 10.1029/2008JF001029
  25. Idso SB (1981) A set of equations for full spectrum and 8–14 μm and 10.5–12.5 μm thermal radiation from cloudless skies. Water Resour Res 17:295–304CrossRefGoogle Scholar
  26. Klok EJ, Oerlemans J (2004) Modelled climate sensitivity of the mass balance of Morteratschgletcher and its dependence on albedo parameterization. Int J Climatol 24:231–245CrossRefGoogle Scholar
  27. Kuhn M, Dreiseitl E, Hofinger S, Markl G, Span N, Kaser G (1999) Measurements and models of the mass balance of Hintereisferner. Geogr Ann A 81(4):659–670CrossRefGoogle Scholar
  28. Kull C, Grosjean M, Veit H (2002) Modeling modern and late Pleistocene glacio-climatological conditions in the north Chilean Andes (29–30°S). Clim Change 52:359–381CrossRefGoogle Scholar
  29. Lhomme JP, Vacher JJ, Rocheteau A (2007) Estimating downward long-wave radiation on the Andean Altiplano. Agric For Meteorol 145(3–4):139–148CrossRefGoogle Scholar
  30. Marks D, Dozier J (1979) A clear-sky longwave radiation model for remote alpine areas. Arch Met Geoph Biokl, Ser B 27:159–187CrossRefGoogle Scholar
  31. Marty C, Philipona R (2000) The clear-sky index to separate clear-sky from cloudy-sky situations in climate research. Geophys Res Lett 27(17):2649–2652CrossRefGoogle Scholar
  32. Marty C, Philipona R, Fröhlich C, Ohmura A (2002) Altitude dependence of surface radiation fluxes and cloud forcing in the alps: results from the alpine surface radiation budget network. Theor Appl Climatol 72(3–4):137–155CrossRefGoogle Scholar
  33. Maykut GA, Church PE (1973) Radiation climate of Barrow, Alaska, 1962–1966. J Appl Meteorol 12:620–628CrossRefGoogle Scholar
  34. Michel D, Philipona R, Ruckstuhl C, Vogt R, Vuilleumier L (2008) Performance and uncertainty of CNR1 net radiometers during a one-year field campaign. J Atmos Ocean Technol 25:442–451. doi: 10.1175/2007JTECHA973.1 CrossRefGoogle Scholar
  35. Mölg T, Hardy DR (2004) Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro. J Geophys Res 109(D16104). doi: 10.1029/2003JD004338
  36. Mölg T, Cullen N, Hardy DR, Kaser G, Klok L (2008) Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climate. Int J Climatol 28:881–892. doi: 10.1002/joc.1589 CrossRefGoogle Scholar
  37. Mölg T, Cullen N, Kaser G (2009) Solar radiation, cloudiness and longwave radiation over low-latitude glaciers: implications for mass balance modelling. J Glaciol 55(190):292–302CrossRefGoogle Scholar
  38. Müller H (1985) On the radiation budget in the Alps. Int J Climatol 5(4):445–462CrossRefGoogle Scholar
  39. Murray FW (1967) On the computation of saturation vapor pressure. J Appl Meteorol 6:203–204CrossRefGoogle Scholar
  40. Nicholson L, Marín J, Lopez D, Rabatel A, Bown F, Rivera A (2010) Glacier inventory of the upper Huasco valley, Norte Chico, Chile: glacier characteristics, glacier change and comparison with central Chile. Ann Glaciol 50(53):111–118CrossRefGoogle Scholar
  41. Ohmura A (2001) Physical basis for the temperature-based melt-index method. J Appl Meteorol 40(4):753–761CrossRefGoogle Scholar
  42. Oke TJ (1987) Boundary layer climates. Methuen, LondonGoogle Scholar
  43. Philipona R, Dürr B, Marty C, Ohmura A, Wild M (2004) Radiative forcing—measured at Earth’s surface—corroborate the increasing greenhouse effect. J Geophys Res 31(N3):L03202Google Scholar
  44. Prata AJ (1996) A new long-wave formula for estimating downward clear-sky radiation at the surface. Q J R Meteorol Soc 122:1127–1151CrossRefGoogle Scholar
  45. Rabatel A, Castebrunet H, Favier V, Nicholson L, Kinnard C (2011) Glacier changes in the Pascua-Lama region, Chilean Andes (29° S): recent mass-balance and 50-year surface-area variations. Cryosphere 5:1029–1041CrossRefGoogle Scholar
  46. Satterland DR (1979) An improved equation for estimating long-wave radiation from the atmosphere. Water Resour Res 15(6):1649–1650CrossRefGoogle Scholar
  47. Sedlar J, Hock R (2009) Testing longwave radiation parameterisations under clear and overcast skies at Storglaciären, Sweden. Cryosphere 3(1):75–84CrossRefGoogle Scholar
  48. Sicart JE, Pomeroy JW, Essery RLH, Bewley D (2006) Incoming longwave radiation to melting snow: observations, sensitivity, and estimation in northern environments. Hydrol Process 20(17):3697–3708CrossRefGoogle Scholar
  49. Sicart JE, Hock R, Ribstein P, Chazarin JP (2010) Sky longwave radiation on tropical Andean glaciers: parameterisation and sensitivity to atmospheric variables. J Glaciol 56(199):854–860CrossRefGoogle Scholar
  50. Sonntag D (1990) Important new values of the physical constants of 1986, vapor pressure formulations based on the ITC-90, and psychrometer formulae. Z Meteorol 40:340–344Google Scholar
  51. Swinbank WC (1963) Long-wave radiation from clear skies. Q J R Meteorol Soc 89:339–348CrossRefGoogle Scholar
  52. van As D, van den Broeke MR, Reijmer CH, van de Wal RSW (2005) The summer surface energy balance of the high Antarctic Plateau. Bound-Lay Meteorol 115:289–317CrossRefGoogle Scholar
  53. van den Broeke MR, van As D, Reijmer CH, van de Wal RSW (2004) Assessing and improving the quality of unattended radiation observations in Antarctica. J Atmos Ocean Tech 21(9):1417–1431CrossRefGoogle Scholar
  54. van den Broeke M, Reijmer C, van As D, Boot W (2006) Daily cycle of the surface energy balance in Antarctica and the influence of clouds. Int J Climatol 26(12):1587–1605CrossRefGoogle Scholar
  55. Vuille M, Keimig F (2004) Interannual variability of summertime convective cloudiness and precipitation in the Central Andes derived from ISCCP-B3 data. J Clim 17:3334–3348CrossRefGoogle Scholar
  56. Yamanouchi T, Kawaguchi S (1984) Longwave radiation balance under a strong surface inversion in the Katabatic wind zone, Antarctica. J Geophys Res 89(D7):11771–11778CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Shelley MacDonell
    • 1
  • Lindsey Nicholson
    • 2
  • Christophe Kinnard
    • 1
  1. 1.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)La SerenaChile
  2. 2.Center for Climate and Cryosphere, Institute for Meteorology and GeophysicsUniversity of InnsbruckInnsbruckAustria

Personalised recommendations