Theoretical and Applied Climatology

, Volume 111, Issue 3–4, pp 437–454 | Cite as

Volcanoes and ENSO in millennium simulations: global impacts and regional reconstructions in East Asia

  • Dan Zhang
  • Richard Blender
  • Klaus Fraedrich
Original Paper


The impacts and cooperative effects of volcanic eruptions and ENSO (El Niño/Southern Oscillation) are analyzed in a millennium simulation for 800–2005 AD using the earth system model (ESM) ECHAM5/MPIOM/JSBACH subject to anthropogenic and natural forcings. The simulation comprises two ensembles, a first with weak (E1, five members) and a second with strong (E2, three members) variability total solar irradiance. In the analysis, the 21 most intense eruptions are selected in each ensemble member. Volcanoes with neutral ENSO states during two preceding winters cause a global cooling in the year after eruptions up to −2.5°C. The nonsignificant positive values in the tropical Pacific Ocean indicate an El Niño-like warming. In the winter after an eruption, warming is mainly found in the Arctic Ocean and the Bering Sea in E2 warming extends to Siberia and central Asia. The recovery times for the volcano-induced cooling (average for 31 eruptions) vary globally between 1 and 12 years. There is no significant increase of El Niño events after volcanic eruptions in both ensembles. The simulated temperature and the drought indices are compared with corresponding reconstructions in East Asia. Volcanoes cause a dramatic cooling in west China (−2°C) and a drought in East China during the year after the eruption. The reconstructions show similar cooling patterns with smaller magnitudes and confirm the dryness in East China. Without volcanoes, El Niño events reduce summer precipitation in the North, while South China becomes wetter; La Niña events cause opposite effects. El Niño events in the winters after eruptions compensate the cooling caused by volcanoes in most regions of China (consistent with reconstructions), while La Niña events intensify the cooling (up to −2.5°C). The simulated and reconstructed drought indices show tripole patterns which are altered by El Niño events. The simulated impact of the Tambora eruption in 1815, which caused the “year without summer” of 1816 in Europe and North America and led to coldness and famines in the Chinese province Yunnan, depends crucially on the ENSO state of the coupled model. A comparison with reconstructed El Niño events shows a moderate cool climate with wet (in the south) and extreme dry anomalies (in the north) persisting for several years.


Volcanic Eruption Ensemble Member Drought Index Southern Pacific Ocean Volcanic Impact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the valuable comments of the anonymous reviewer. We thank Johann Jungclaus, Martin Claußen, Xiuhua Zhu, and the Millennium consortium at the Max Planck Institute and at the University of Hamburg for providing the simulated data and stimulating discussions. We are grateful to Wang Shao-Wu (Beijing), Ge Quan-Sheng (Beijing), and Michael E. Mann (Pennsylvania State) for providing the reconstructed temperature and Zheng Jing-Yun, Anthony Garnaut, and Edward R. Cook (New York) for drought indices. DZ acknowledges the support for the visit to KlimaCampus by the Institute of Geographic Sciences and Natural Resources Research (Chinese Academy of Sciences) and KF acknowledges the support by the Max Planck Society.


  1. Adams JB, Mann ME, Ammann CM (2003) Proxy evidence for an El Niño-like response to volcanic forcing. Nature 426:274–278CrossRefGoogle Scholar
  2. Ammann CM, Naveau P (2003) Statistical analysis of tropical explosive volcanism occurrences over the last 6 centuries. Geophys Res Lett 30:1210. doi: 10.1029/2002GL016388 CrossRefGoogle Scholar
  3. Ammann CM, Joos F, Schimel DS, Otto-Bliesner BL, Tomas RA (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model. Proc Natl Acad Sci USA 104:3713–3718CrossRefGoogle Scholar
  4. Anchukaitis KJ, Buckley BM, Cook ER, Cook BI, D’Arrigo RD, Ammann CM (2010) Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys Res Lett 37:L22703. doi: 10.1029/2010GL044843 CrossRefGoogle Scholar
  5. Angell JK, Korshover J (1985) Surface temperature changes following the six major volcanic episodes between 1789 and 1980. J Clim Appl Meteorol 24:937–951CrossRefGoogle Scholar
  6. Atwell WS (2001) Volcanism and short-term climatic change in East Asian and world history, c 1200–1699. J World Hist 12:29–98CrossRefGoogle Scholar
  7. Bard E, Raisbeck G, Yiou F, Jouzel J (2000) Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus 52B:985–992Google Scholar
  8. Blender R, Zhu X, Zhang D, Fraedrich K (2011) Yangtze runoff, precipitation, and the East Asian monsoon in a 2800 years climate control simulation. Quatern Int 244:194–201. doi: 10.1016/j.quaint.2010.10.017 CrossRefGoogle Scholar
  9. Bordi I, Fraedrich K, Jiang J, Sutera A (2004) Spatio-temporal variability of dry and wet periods in eastern China. Theor Appl Climatol 79:81–91. doi: 10.1007/s00704-004-0053-8 CrossRefGoogle Scholar
  10. Bothe O, Fraedrich K, Zhu X (2011) Large-scale circulations and Tibetan Plateau summer drought and wetness in a high-resolution climate model. Int J Climatol 31:832–846. doi: 10.1002/joc.2124 CrossRefGoogle Scholar
  11. Brovkin V, Lorenz SJ, Jungclaus J, Raddatz T, Timmreck C, Reick CH, Segschneider J, Six K (2010) Sensitivity of a coupled climate-carbon cycle model to large volcanic eruptions during the last millennium. Tellus B 62:674–681. doi: 10.1111/j.1600-0889.2010.00471.x CrossRefGoogle Scholar
  12. Camp CD, Tung KK (2007) Surface warming by the solar cycle as revealed by the composite mean difference projection. Geophys Res Lett 34:L14703CrossRefGoogle Scholar
  13. Central Meteorological Bureau (1981) Yearly charts of dryness/wetness in China for the last 500 years (in Chinese). Cartographic, BeijingGoogle Scholar
  14. Cole-Dai J, Ferris D, Lanciki A, Savarino J, Baroni M, Thiemens MH (2009) Cold decade (AD 1810–1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption. Geophys Res Lett 36:L22703CrossRefGoogle Scholar
  15. Compo GP, Sardeshmukh PD (2010) Removing ENSO-Related variations from the climate record. J Climate 23:1957–1978CrossRefGoogle Scholar
  16. Cook ER, Anchukaitis KJ, Buckley BM, D’Arrigo RD, Jacoby GC, Wright WE (2010) Asian monsoon failure and megadrought during the last millennium. Science 328:486–489. doi: 10.1126/science.1185188 CrossRefGoogle Scholar
  17. Crowley TJ, Zielinski G, Vinther B, Udisti R, Kreutz K, Cole-Dai J, Castellano E (2008) Volcanism and the Little Ice Age. PAGES News 16:22–23Google Scholar
  18. D’Arrigo R, Wilson R, Tudhope A (2009) The impact of volcanic forcing on tropical temperatures during the past four centuries. Nat Geosci 2:51–56CrossRefGoogle Scholar
  19. Dai J, Mosley-Thompson E, Thompson LG (1991) Ice core evidence for an explosive tropical volcanic eruption 6 years preceding Tambora. J Geophys Res 96:17361–17366CrossRefGoogle Scholar
  20. Emile-Geay J, Seager R, Cane MA, Cook ER, Haug GH (2008) Volcanoes and ENSO over the past millennium. J Climate 21:3134–3148CrossRefGoogle Scholar
  21. Fischer EM, Luterbacher J, Zorita E, Tett SFB, Casty C, Wanner H (2007) European climate response to tropical volcanic eruptions over the last half millennium. Geophys Res Lett 34:L05707. doi: 10.1029/2006GL027992 CrossRefGoogle Scholar
  22. Foley JA, Costa MH, Delire C, Ramankutty N, Snyder P (2003) Green surprise? How terrestrial ecosystems could affect Earth’s climate. Front Ecol Environ 1:38–44Google Scholar
  23. Fraedrich K, Blender R (2003) Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys Rev Lett 90:108501CrossRefGoogle Scholar
  24. Fraedrich K, Blender R, Zhu X (2009) Continuum climate variability: long-term memory, extremes, and predictability. Int J Mod Phys B 23:5403–5416CrossRefGoogle Scholar
  25. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate 19:3337–3353CrossRefGoogle Scholar
  26. Froelicher TL, Joos F, Raible CC (2011) Sensitivity of atmospheric CO2 and climate to explosive volcanic eruptions. Biogeosci 8:2317–2339CrossRefGoogle Scholar
  27. Ge QS, Zheng JY, Fang XQ, Man ZM, Zhang XQ, Zhang PY, Wang WC (2003) Winter half-year temperature reconstruction for the middle and lower reaches of the Yellow River and Yangtze River, China, during the past 2,000 years. Holocene 13:933–940Google Scholar
  28. Gergis J, Fowler A (2006) How unusual was late 20th century El Niño–Southern Oscillation (ENSO)? Assessing evidence from tree-ring, coral, ice-core and documentary palaeoarchives, AD 1525–2002. Adv Geosci 6:173–179CrossRefGoogle Scholar
  29. Global Volcanism Program (2011) Smithsonian National Museum of Natural History/Washington: Available at Accessed 1 November 2011
  30. Goosse H, Renssen H, Timmermann A, Bradley RS, Mann ME (2006) Using paleoclimate proxy-data to select optimal realizations in an ensemble of simulations of the climate of the past millennium. Clim Dynam 27:165–184. doi: 10.1007/s00382-006-0128-6 CrossRefGoogle Scholar
  31. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean–atmosphere general circulation models: progress and challenges. Bull Amer Meteorol Soc 90:325–340CrossRefGoogle Scholar
  32. Hagemann S, Arpe K, Roeckner E (2006) Evaluation of the hydrological cycle in the ECHAM5 Model. J Climate 19:3810–3827CrossRefGoogle Scholar
  33. Hoerling MP, Kumar A, Xu T (2001) Robustness of the nonlinear climate response to ENSO’s extreme phases. J Climate 14:1277–1293CrossRefGoogle Scholar
  34. Jiang T, Zhang Q, Blender R, Fraedrich K (2005) Yangtze Delta floods and droughts of the last millennium: abrupt changes and long term memory. Theor Appl Climatol 82:131–141CrossRefGoogle Scholar
  35. Jungclaus JH, Lorenz SJ, Timmreck C, Reick CH, Brovkin V, Giorgetta MA, Raddatz TJ, Roeckner E, Segschneider J, Six K, Schnur R, Widmann H, Crowley TJ, Krivova N, Vieira LE, Solanki SK, Klocke D, Botzet M, Esch M, Gayler V, Haak H, Pongratz J, Claussen M, Stevens B, Marotzke J (2010) Climate and carbon-cycle variability over the last millennium. Clim Past 6:1009–1044CrossRefGoogle Scholar
  36. Kirchner I, Graf HF (1995) Volcanos and El Niño: signal separation in Northern Hemisphere winter. Clim Dynam 11:341–358CrossRefGoogle Scholar
  37. Krivova NA, Balmaceda L, Solanki SK (2007) Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron Astrophys 467:335–346CrossRefGoogle Scholar
  38. Lean JL, Rind DH (2008) How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett 35:L18701CrossRefGoogle Scholar
  39. Mann ME, Cane MA, Zebiak SE, Clement A (2005) Volcanic and solar forcing of the Tropical Pacific over the past 1000 years. J Climate 18:447–456CrossRefGoogle Scholar
  40. Mann ME, Zhang Z, Rutherford S, Bradley R, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval climate anomaly. Science 326:1256–1260. doi: 10.1126/science.1177303 CrossRefGoogle Scholar
  41. Mao X, Cheng S, Hong Y, Zhu Y, Wang F (2009) The influence of volcanism on paleoclimate in the northeast of China: insights from Jinchuan peat, Jilin Province, China. Chin J Geochem 28:212–219. doi: 10.1007/s11631-009-0212-9 CrossRefGoogle Scholar
  42. Marsland S, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127CrossRefGoogle Scholar
  43. Mass CF, Portman DA (1989) Major volcanic eruptions and climate: a critical evaluation. J Climate 2:566–593CrossRefGoogle Scholar
  44. McGregor S, Timmermann A, Timm O (2010) A unified proxy for ENSO and PDO variability since 1650. Clim Past 6:1–17CrossRefGoogle Scholar
  45. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales, In: 8th Conf on applied climatology, Amer Meteor Soc Anaheim, Canada, 179–184Google Scholar
  46. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238CrossRefGoogle Scholar
  47. Oppenheimer C (2003) Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog Phys Geog 27:230–259CrossRefGoogle Scholar
  48. Peng Y, Shen C, Wang W, Xu Y (2010) Response of summer precipitation over Eastern China to large volcanic eruptions. J Climate 23:818–824. doi: 10.1175/2009JCLI2950.1 CrossRefGoogle Scholar
  49. Penland C, Matrosova L (2006) Studies of El Niño and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J Climate 19:5796–5815CrossRefGoogle Scholar
  50. Pongratz J, Reick C, Raddatz T, Claussen M (2008) A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochem Cy 22:GB3018. doi: 10.1029/2007GB003153 CrossRefGoogle Scholar
  51. Quinn WH (1993) The large-scale ENSO event the El Niño and other important regional features. Bull Inst fr études andines 22:13–34Google Scholar
  52. Raddatz TJ, Reick CJ, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler KG, Wetzel P, Jungclaus JH (2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the 21st century. Clim Dynam 29:565–574CrossRefGoogle Scholar
  53. Rampino MR, Self S (1982) Historic eruptions of Tambora (1815), Krakatau (1883), and Agung (1963), their stratospheric aerosols, and climatic impact. Quatern Res 18:127–143CrossRefGoogle Scholar
  54. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219CrossRefGoogle Scholar
  55. Robock A, Liu Y (1994) The volcanic signal in Goddard Institute for space studies three-dimensional model simulations. J Climate 7:44–55CrossRefGoogle Scholar
  56. Robock A, Mao J (1995) The volcanic signal in surface temperature observations. J Climate 8:1086–1103CrossRefGoogle Scholar
  57. Robock A, Oman L, Stenchikov GL (2008) Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J Geophys Res 113:D16101. doi: 10.1029/2008JD010050 CrossRefGoogle Scholar
  58. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5, Part I: model description. Max Planck Institute for Meteorology. Rep 349:1–127Google Scholar
  59. Santer BD, Wigley TML, Doutriaux C, Boyle JS, Hansen JE, Jones PD, Meehl GA, Roeckner E, Sengupta S, Taylor KE (2001) Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. J Geophys Res 106:28033–28059CrossRefGoogle Scholar
  60. Schneider DP, Ammann CM, Otto-Bliesner BL, Kaufman DS (2009) Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model. J Geophys Res 114:D15101. doi: 10.1029/2008JD011222 CrossRefGoogle Scholar
  61. Shindell DT, Schmidt GA, Miller RL, Mann ME (2003) Volcanic and solar forcing of climate change during the preindustrial era. J Climate 16:4094–4107CrossRefGoogle Scholar
  62. Shindell DT, Schmidt GA, Mann ME, Faluvegi G (2004) Dynamic winter climate response to large tropical volcanic eruptions since 1600. J Geophys Res 109:D05104. doi: 10.1029/2003JD004151 CrossRefGoogle Scholar
  63. Sienz F, Bordi I, Fraedrich K, Schneidereit A (2007) Extreme dry and wet events in Iceland: observations, simulations and scenarios. Meteorol Zeitschr 16:9–16CrossRefGoogle Scholar
  64. Sims AP, Niyogi DS, Raman S (2002) Adopting drought indices for estimating soil moisture: a North Carolina case study. Geophys Res Lett 29(8):1183. doi: 10.1029/2001GL013343 CrossRefGoogle Scholar
  65. Soon W, Yaskell SH (2003) Year without a summer. Mercury 32:13–22Google Scholar
  66. Stenchikov G, Hamilton K, Stouffer RJ, Robock A, Ramaswamy V, Santer B, Graf HF (2006) Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J Geophys Res 111:D07107. doi: 10.1029/2005JD006286 CrossRefGoogle Scholar
  67. Stenchikov G, Delworth TL, Ramaswamy V, Stouffer RJ, Wittenberg A, Fanrong F (2009) Volcanic signals in oceans. J Geophys Res 114:D16104. doi: 10.1029/2008JD011673 CrossRefGoogle Scholar
  68. Stothers RB (1984) The great Tambora eruption in 1815 and its aftermath. Science 224:1191–1198CrossRefGoogle Scholar
  69. Thompson RD (1995) Volcanic eruptions and global temperatures. Ambio 24:320–321Google Scholar
  70. Timmreck C, Lorenz SJ, Crowley TJ, Kinne S, Raddatz TJ, Thomas MA, Jungclaus JH (2009) Limited temperature response to the very large AD 1258 volcanic eruption. Geophys Res Lett 36:L21708. doi: 10.1029/2009GL040083 CrossRefGoogle Scholar
  71. Timmreck C, Graf HF, Lorenz SJ, Niemeier U, Zanchettin D, Matei D, Jungclaus JH, Crowley TJ (2010) Aerosol size confines climate response to volcanic supereruptions. Geophys Res Lett 37:L24705. doi: 10.1029/2010GL045464 CrossRefGoogle Scholar
  72. Tung KK, Zhou J, Camp C (2008) Constraining model transient climate response using independent observations of solar cycle forcing and response. Geophys Res Lett 35:L17707CrossRefGoogle Scholar
  73. Wang SW, Wen XY, Luo Y, Dong WJ, Zhao ZC, Yang B (2007) Reconstruction of temperature series of China for the last 1000 years. Chin Sci Bull 52:3272–3280CrossRefGoogle Scholar
  74. Wetzel P, Maier-Reimer E, Botzet M, Jungclaus JH, Keenlyside N, Latif M (2006) Effects of ocean biology on the penetrative radiation in a coupled climate model. J Climate 19:3973–3987CrossRefGoogle Scholar
  75. Yang B, Bräuning A, Johnson KR, Shi YF (2002) General characteristics of temperature variation in China during the last two millennia. Geophys Res Lett 29:1324–1327. doi: 10.1029/2001GL014485 CrossRefGoogle Scholar
  76. Yang YD, Man ZM, Zheng JY (2005) A serious famine in Yunnan (1815–1817) and the eruption of Tambora Volcano (in Chinese). Fudan J (Soc Sci) 1:79–85Google Scholar
  77. Yoshimori M, Stocker TF, Raible CC, Renold M (2005) Externally forced and internal variability in ensemble climate simulations of the Maunder Minimum. J Climate 18:4253–4270CrossRefGoogle Scholar
  78. Zhai J, Su B, Krysanova V, Vetter T, Gao C, Jiang T (2010) Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. J Climate 23:649–663CrossRefGoogle Scholar
  79. Zhang D, Blender R, Zhu X, Fraedrich K (2010) Temperature variability in China in an ensemble simulation for the last 1200 years. Theor Appl Climatol 103:387–399. doi: 10.1007/s00704-010-0305-8 CrossRefGoogle Scholar
  80. Zhang D, Blender R, Fraedrich K (2011) Volcanic and ENSO effects in China in simulations and reconstructions: Tambora eruption, 1815. Clim Past Discuss 7:2061–2088CrossRefGoogle Scholar
  81. Zheng JY, Wang WC, Ge QS, Man ZM, Zhang PY (2006) Precipitation variability and extreme events in Eastern China during the past 1500 years. Terr Atmos Ocean Sci 17:579–592Google Scholar
  82. Zhu X, Bothe O, Fraedrich K (2010) Summer atmospheric bridging between Europe and East Asia: influences on drought and wetness on the Tibetan Plateau. Quatern Int. doi: 10.1016/j.quaint.2010.06.015

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Meteorological InstituteUniversity of HamburgHamburgGermany
  2. 2.Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  3. 3.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations