Theoretical and Applied Climatology

, Volume 110, Issue 1–2, pp 17–34 | Cite as

Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements

  • Rudolf Brázdil
  • Pavel Zahradníček
  • Petr Pišoft
  • Petr Štěpánek
  • Monika Bělínová
  • Petr Dobrovolný
Original Paper

Abstract

The history of early meteorological observations using instruments in the Czech Lands is described (the longest temperature series for Prague-Klementinum starts in 1775, precipitation series for Brno in 1803). Using the PRODIGE method, long-term monthly temperature and precipitation series from selected secular stations were homogenised (for 10 and 12 stations, respectively). All the seasonal and annual temperature series for the common period 1882–2010 show a significant positive linear trend with accelerated warming from the 1970s onwards. No significant linear trends were disclosed in the series of seasonal and annual precipitation totals. Correlation coefficients between the Czech series analysed decrease as distances between measuring stations increase. A sharper decrease of correlations for precipitation totals displays much weaker spatial relationships than those for mean temperatures. The highest correlations between all stations appeared in 1921–1950, the lowest in 1891–1920 (temperature) and 1981–2010 (precipitation). Wavelet analysis reveals that very distinct annual cycles as well as the slightly weaker semi-annual ones are better expressed for temperature series than for precipitation. Statistically significant cycles longer than 1 year are temporally unstable and sporadic for precipitation, while in the temperature series cycles of 7.4–7.7 and 17.9–18.4 years were recorded as significant by all stations in 1882–2010 (quasi-biennial cycle of 2.1–2.2 years for half the stations). Czech homogenous temperature series correlate best with those of the Northern Hemisphere for annual, spring and summer values (with significant correlation coefficients between 0.60 and 0.70), but this relation is temporally unstable. Circulation indices, such as the North Atlantic Oscillation Index (NAOI) and the Central European Zonal Index (CEZI), may explain the greater part of Czech temperature variability, especially from December to March and for the winter; however, this relationship is much weaker, or even random, for precipitation series. Further, relationships with the Southern Oscillation Index (SOI) are weak and random. Relatively weak coincidences exist between statistically significant cycles in the Czech series and those detected in NAOI, CEZI and SOI series.

References

  1. Aguilar E, Auer I, Brunetti M, Peterson TC, Wieringa J (2003) Guidelines on climate metadata and homogenization. WCDMP-No. 53, WMO-TD No. 1186. World Meteorological Organisation, Geneva, p 50Google Scholar
  2. Auer I, Böhm R, Schöner W (2001) Austrian long-term climate 1767–2000: multiple instrumental climate time series from Central Europe. In: Österreichische Beiträge zu Meteorologie und Geophysik 25. Zentralanstalt für Meteorologie und Geodynamik, Wien, p 155Google Scholar
  3. Auer I, Böhm R, Jurković A, Orlik A, Potzmann R, Schöner W, Ungersböck M, Brunetti M, Nanni T, Maugeri M, Briffa K, Jones P, Efthymiadis D, Mestre O, Moisselin J-M, Begert M, Brazdil R, Bochnicek O, Cegnar T, Gajić-Čapka M, Zaninović K, Majstorović Ž, Szalai S, Szentimrey T, Mercalli L (2005) A new instrumental precipitation dataset for the Greater Alpine Region for the period 1800–2002. Int J Climatol 25:139–166. doi:10.1002/joc.1135 CrossRefGoogle Scholar
  4. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46. doi:10.1002/joc.1377 CrossRefGoogle Scholar
  5. Begert M, Schlegel T, Kirchhofer W (2005) Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int J Climatol 25:65–80. doi:10.1002/joc.1118 CrossRefGoogle Scholar
  6. Bělínová M, Brázdil R (2012) Meteorologická pozorování c. k. Vlastenecko-hospodářské společnosti v Čechách v letech 1817–1847 (Meteorological observations by the I. R. Patriotic-Economic Society in Bohemia, 1817–1847). Meteorol Zpr 65:13–22Google Scholar
  7. Beranová R, Huth R (2005) Long term changes of the heat island of Prague under different synoptic conditions. Theor Appl Climatol 82:113–118. doi:10.1007/s00704-004-0115-y CrossRefGoogle Scholar
  8. Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801. doi:10.1002/joc.689 CrossRefGoogle Scholar
  9. Böhm R, Jones PD, Hiebl J, Frank D, Brunetti M, Maugeri M (2010) The early instrumental warm-bias: a solution for long central European temperature series 1760–2007. Clim Change 101:41–67. doi:10.1007/s10584-009-9649-4 CrossRefGoogle Scholar
  10. Brázdil R, Budíková M (1999) An urban bias in air temperature fluctuations at the Klementinum, Prague, The Czech Republic. Atmos Environ 33:4211–4217. doi:10.1016/S1352-2310(99)00163-6 CrossRefGoogle Scholar
  11. Brázdil R, Štěpánek P (1998) Kolísání teploty vzduchu v Brně v období 1891–1995 (Air temperature fluctuations in Brno in the period 1891–1995). Geografie 103:3–30Google Scholar
  12. Brázdil R, Valášek H (2001) Popis klimatu Moravy od Kryštofa Passyho z roku 1797 (The description of the climate of Moravia by Kryštof Passy from the year 1797). Geografie 106:234–250Google Scholar
  13. Brázdil R, Valášek H (2002) Meteorologická měření a pozorování v Zákupech v letech 1718–1720 (Meteorological measurements and observations at Zákupy in 1718–1720). Geografie 107:1–22Google Scholar
  14. Brázdil R, Štěpánek P, Květoň V (2001) Temperature series of the Czech Republic and its relation to Northern Hemisphere temperatures in the period 1961–1999. In: Brunet India M, López Bonillo D (eds) Detecting and modelling regional climate change. Springer, Berlin, pp 69–80Google Scholar
  15. Brázdil R, Valášek H, Sviták Z, Macková J (2002) History of weather and climate in the Czech Lands V. Instrumental meteorological measurements in Moravia up to the end of the eighteenth century. Masaryk University, Brno, p 250Google Scholar
  16. Brázdil R, Valášek H, Macková J (2005) Meteorologická pozorování v Brně v první polovině 19. století. Historie počasí a hydrometeorologických extrémů (Meteorological observations in Brno in the first half of the 19th century. History of weather and hydrometeorological extremes). Archiv města Brna, Brno, p 452Google Scholar
  17. Brázdil R, Řezníčková L, Valášek H (2006) Early instrumental meteorological observations in the Czech Lands I: Ferdinand Knittelmayer, Brno, 1799–1812. Meteorol Čas 9:59–71Google Scholar
  18. Brázdil R, Chromá K, Dobrovolný P, Tolasz R (2009) Climate fluctuations in the Czech Republic during the period 1961–2005. Int J Climatol 29:223–242. doi:10.1002/joc.1718 CrossRefGoogle Scholar
  19. Brohan P, Kennedy JJ, Haris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548 CrossRefGoogle Scholar
  20. Brunetti M, Maugeri M, Monti F, Nanni T (2006) Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int J Climatol 26:345–381. doi:10.1002/joc.1251 CrossRefGoogle Scholar
  21. Bryś K, Bryś T (2010) Reconstruction of the 217 year (1791–2007) Wrocław air temperature and precipitation series. Bull Geogr Phys Geogr Ser 3:121–171Google Scholar
  22. Cahynová M (2005) Vliv Severoatlantské oscilace na sezonní teploty vzduchu ve střední Evropě (Influence of the North Atlantic Oscillation on seasonal temperatures in Central Europe). Meteorol Zpr 58:41–46Google Scholar
  23. Camuffo D, Bertolin C (2011) The earliest temperature observations in the world: the Medici Network (1654–1670). Clim Change. doi:10.1007/s10584-011-0142-5
  24. Castro A, Vidal MI, Calvo AI, Fernandez-Raga M, Fraile R (2011) May the NAO index be used to forecast rain in Spain? Atmosfera 24:251–265Google Scholar
  25. Caussinus H, Lyazrhi F (1997) Choosing a linear model with a random number of change-points and outliers. Ann Inst Stat Math 49:761–775. doi:10.1023/A:1003230713770 CrossRefGoogle Scholar
  26. Caussinus H, Mestre O (2004) Detection and correction of artificial shifts in climate series. J R Stat Soc C App 53:405–425. doi:10.1111/j.1467-9876.2004.05155.x CrossRefGoogle Scholar
  27. Chládová Z, Kalvová J (2005) Změny vybraných klimatických charakteristik v České republice v období 1961–2000 (The changes of selected climate characteristics in the Czech Republic in the period 1961–2000). Meteorol Zpr 58:146–153Google Scholar
  28. Chládová Z, Kalvová J, Raidl A (2007) The observed changes of selected climate characteristics in the period 1961–2000. Meteorol Čas 10:13–19Google Scholar
  29. Conrad V, Pollak LW (1950) Methods in climatology. Harvard University Press, Cambridge, p 459Google Scholar
  30. Dobrovolný P, Moberg A, Brázdil R, Pfister C, Glaser R, Wilson R, van Engelen A, Limanówka D, Kiss A, Halíčková M, Macková J, Riemann D, Luterbacher J, Böhm R (2010) Monthly and seasonal temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Clim Change 101:69–107. doi:10.1007/s10584-009-9724-x CrossRefGoogle Scholar
  31. Domonkos P, Tar K (2003) Long-term changes in observed temperature and precipitation series 1901–1998 from Hungary and their relations to larger scale changes. Theor Appl Climatol 75:131–147. doi:10.1007/s00704-002-0716-2 CrossRefGoogle Scholar
  32. Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quaternary Sci Rev 26:3298–3310. doi:10.1016/j.quascirev.2007.08.002 CrossRefGoogle Scholar
  33. Hammerl C, Lenhardt W, Steinacker R, Steinhauser P (eds) (2001) Die Zentralanstalt für Meteorologie und Geodynamik 1851–2001. 150 Jahre Meteorologie und Geophysik in Österreich. Leykam Buchverlagsgesellschaft, Graz, p 838Google Scholar
  34. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) (2003) The North Atlantic Oscillation: climate significance and environmental impact. Geophysical Monograph Series 134. American Geophysical Union, Washington, p 279Google Scholar
  35. Huth R, Pokorná L (2005) Simultaneous analysis of climatic trends in multiple variables: an example of application of multivariate statistical methods. Int J Climatol 25:469–484. doi:10.1002/joc.1146 CrossRefGoogle Scholar
  36. Jacobeit J, Jönsson P, Bärring L, Beck C, Ekström M (2001) Zonal indices for Europe 1780–1995 and running correlations with temperature. Clim Change 48:219–241. doi:10.1023/A:1005619023045 CrossRefGoogle Scholar
  37. Jacobeit J, Rathmann J, Philipp A, Jones PD (2009) Central European temperature and precipitation extremes in relation to large-scale atmospheric circulation types. Meteorol Z 18:397–410. doi:10.1127/0941-2948/2009/0390 CrossRefGoogle Scholar
  38. Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol 17:1433–1450. doi:10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P CrossRefGoogle Scholar
  39. Jones PD, Briffa KR, Osborn TJ, Lough JM, van Ommen TD, Vinther BM, Luterbacher J, Wahl ER, Zwiers FW, Mann ME, Schmidt GA, Ammann CM, Buckley BM, Cobb KM, Esper J, Goosse H, Graham N, Jansen E, Kiefer T, Kull C, Küttel M, Mosley-Thompson E, Overpeck JT, Riedwyl N, Schulz M, Tudhope AW, Villalba R, Wanner H, Wolff E, Xoplaki E (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49. doi:10.1177/0959683608098952 CrossRefGoogle Scholar
  40. Jurković A, Majstorović Ž, Böhm R, Auer I, Gruber C, Hodžić S, Orlik A, Zulum D (2011) The Mountain Observatory Bjelašnica—history, analysis, homogenization and interpretation of a more than 100 years long temperature data set. Meteorol Z 20:291–303. doi:10.1127/0941-2948/2011/0205 CrossRefGoogle Scholar
  41. Kreil C (1865) Klimatologie von Böhmen. Carl Gerold’s Sohn, Wien, p 450Google Scholar
  42. Leijonhufvud L, Wilson R, Moberg A, Söderberg J, Retsö D, Söderlind U (2010) Five centuries of Stockholm winter/spring temperatures reconstructed from documentary evidence and instrumental observations. Clim Change 101:109–141. doi:10.1007/s10584-009-9650-y CrossRefGoogle Scholar
  43. Liu Y, Liang XS, Weisberg RH (2007) Rectification of the bias in the wavelet power spectrum. J Atmos Ocean Tech 24:2093–2102. doi:10.1175/2007JTECHO511.1 CrossRefGoogle Scholar
  44. Lüdecke C (2010) Von der Kanoldsammlung (1717–1726) zu den Ephemeriden der Societas Meteorologica Palatina (1781–1792). Meteorologische Quellen zur Umweltgeschichte des 18. Jahrhunderts. In: Poplow M (ed) Landschaften agrarisch-ökonomischen Wissens. Strategien innovativer Ressourcennutzung in Zeitschriften und Sozietäten des 18. Jahrhunderts. Cottbuser Studien zur Geschichte von Technik, Arbeit und Umwelt 30. Waxmann Verlag, Münster u. a., pp 97–119Google Scholar
  45. Maier U, Drohm C, Müller-Westermeier G (2006) Klimatologische Auswertung von Zeitreihen der Monatsmittel von Temperaturminima und Temperaturmaxima im 20. Jahrhundert. Berichte des Deutschen Wetterdienstes 229. Deutscher Wetterdienst, Offenbach am Main, p 77Google Scholar
  46. Mallat S (1999) A wavelet tour of signal processing. Academic, San Diego, p 620Google Scholar
  47. Manley G (1974) Central England temperatures: monthly means 1659 to 1973. Q J Roy Meteorol Soc 100:389–405CrossRefGoogle Scholar
  48. Moberg A, Alexandersson H, Bergström H, Jones PD (2003) Were southern Swedish summer temperatures before 1860 as warm as measured? Int J Climatol 23:1495–1521. doi:10.1002/joc.945 CrossRefGoogle Scholar
  49. Osborn TJ (2006) Recent variations in the winter North Atlantic Oscillation. Weather 61:353–355. doi:10.1256/wea.190.06 CrossRefGoogle Scholar
  50. Parker DE (2010) Uncertainties in early Central England temperatures. Int J Climatol 30:1105–1113. doi:10.1002/joc.1967 CrossRefGoogle Scholar
  51. Percival DB (2002) Wavelets. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of environmetrics, vol 4. Wiley, New York, pp 2338–2351Google Scholar
  52. Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, Cambridge, p 620Google Scholar
  53. Peterson TC, Easterling DR, Karl TR, Groisman P, Nicholls N, Plummer N, Torok S, Auer I, Boehm R, Gullett D, Vincent L, Heino R, Tuomenvirta H, Mestre O, Szentimrey T, Salinger J, Førland EJ, Hanssen-Bauer I, Alexandersson H, Jones P, Parker D (1998) Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol 18:1493–1517. doi:10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T CrossRefGoogle Scholar
  54. Pišoft P, Kalvová J, Brázdil R (2004) Cycles and trends in the Czech temperature series using wavelet transforms. Int J Climatol 24:1661–1670. doi:10.1002/joc.1095 CrossRefGoogle Scholar
  55. Rebetez M, Reinhard M (2008) Monthly air temperature trends in Switzerland in 1901–2000 and 1975–2004. Theor Appl Climatol 91:27–34. doi:10.1007/s00704-007-0296-2 CrossRefGoogle Scholar
  56. Rodrigo FS (2010) Changes in the probability of extreme daily precipitation observed from 1951 to 2002 in the Iberian Peninsula. Int J Climatol 30:1512–1525. doi:10.1002/joc.1987 Google Scholar
  57. Ropelewski CF, Jones PD (1987) An extension of the Tahiti-Darwin Southern Oscillation Index. Mon Weather Rev 115:2161–2165. doi:10.1175/1520-0493(1987) 115<2161:AEOTTS>2.0.CO;2 CrossRefGoogle Scholar
  58. Scherrer SC, Appenzeller C, Liniger MA (2006) Temperature trends in Switzerland and Europe: implications for climate normals. Int J Climatol 26:565–580. doi:10.1002/joc.1270 CrossRefGoogle Scholar
  59. Schönwiese C-D, Walter A, Brinckmann S (2010) Statistical assessment of anthropogenic and natural global climate forcing. An update. Meteorol Z 19:3–10. doi:10.1127/0941-2948/2010/0421 CrossRefGoogle Scholar
  60. Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL, Chen Z (eds) (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 996Google Scholar
  61. Staeger T, Grieser J, Schönwiese CD (2003) Statistical separation of observed global and European climate data into natural and anthropogenic signals. Clim Res 24:3–13. doi:10.3354/cr024003 CrossRefGoogle Scholar
  62. Štekl J, Brázdil R, Kakos V, Jež J, Tolasz R, Sokol Z (2001) Extrémní denní srážkové úhrny na území ČR v období 1879–2000 a jejich synoptické příčiny (Extreme Daily Precipitation Totals on the Territory of the Czech Republic in the 1879–2000 Period and Their Synoptic Causes). Národní klimatický program České republiky 31. Český hydrometeorologický ústav, Praha, p 140Google Scholar
  63. Štěpánek P (2004) Homogenizace teploty vzduchu na území České republiky v období přístrojových pozorování (Homogenisation of air temperature on the territory of the Czech Republic in the period of instrumental observations). Práce a studie 32. Český hydrometeorologický ústav, Praha, p 56Google Scholar
  64. Štěpánek P, Řezníčková L, Brázdil R (2008) Homogenization of daily air pressure and temperature series for Brno (Czech Republic) in the period 1848–2005. In: Lakatos M, Szentimrey T, Bihari Z, Szalai S (eds) Proceedings of the fifth seminar for homogenization and quality control in climatological databases (Budapest, Hungary, 29 May–2 June 2006). WCDMP-No. 71. World Meteorological Organization, Geneva, pp 107–122Google Scholar
  65. Štěpánek P, Zahradníček P, Skalák P (2009) Data quality control and homogenization of air temperature and precipitation series in the area of the Czech Republic in the period 1961–2007. Adv Sci Res 3:23–26. doi:10.1007/s10584-009-9741-9 CrossRefGoogle Scholar
  66. Strnadt A (1791) Meteorologische Resultate der in Prag und einigen andern Orten in Böhmen gemachten Luftbeobachtungen und andern Erscheinungen. Neuere Abhandlungen der k. Böhmischen Gesellschaft der Wissenschaften. Erster Band. J. V. Degen, Wien, Prag, pp 235–256Google Scholar
  67. Strnadt A (1794a) Ueber die mittlere Barometerhöhe von Prag. In: Mayer J (ed) Sammlung Physikalischer Aufsätze, besonders die Böhmische Naturgeschichte betreffend, von einer Gesellschaft Böhmischer Naturforscher. Vierter Band. In der Waltherischen Hofbuchhandlung, Dresden, pp 41–60Google Scholar
  68. Strnadt A (1794b) Bestimmung des mittlern Grads der Wärme von Prag. In: Mayer J (ed) Sammlung Physikalischer Aufsätze, besonders die Böhmische Naturgeschichte betreffend, von einer Gesellschaft Böhmischer Naturforscher. Vierter Band. In der Waltherischen Hofbuchhandlung, Dresden, pp 61–68Google Scholar
  69. Strnadt A (1795) Resultate der in Prag und einigen andern Orten in Böhmen 1790, 1791, 1792, 1793 gemachten meteorologischen Beobachtungen. Neuere Abhandlungen der k. Böhmischen Gesellschaft der Wissenschaften. Zweyter Band. J. G. Calve, Prag, pp 249–253Google Scholar
  70. Tietäväinen H, Tuomenvirta H, Venäläinen A (2010) Annual and seasonal mean temperatures in Finand during the last 160 years based on gridded temperature data. Int J Climatol 30:2247–2256. doi:10.1002/joc.2046 CrossRefGoogle Scholar
  71. Toreti A, Desiato F, Fioravanti G, Perconti W (2010) Seasonal temperatures over Italy and their relationship with low-frequency atmospheric circulation patterns. Clim Change 99:211–227. doi:10.1007/s10584-009-9640-0 CrossRefGoogle Scholar
  72. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78CrossRefGoogle Scholar
  73. Trigo RM, Osborn TJ, Corte-Real JM (2002) The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Clim Res 20:9–17. doi:10.3354/cr020009 CrossRefGoogle Scholar
  74. van Bebber WJ (1881) Die geographische Vertheilung und Bewegung, das Entstehen und Verschwinden der barometrischen Minima in den Jahren 1876 bis 1880. Z Öster Ges Meteorol 16:414–419Google Scholar
  75. van Bebber WJ (1883) Typische Witterungserscheinungen. Z Öster Ges Meteorol 18:447–458Google Scholar
  76. van der Schrier G, van Ulden A, van Oldenborgh GJ (2011) The construction of a Central Netherlands temperature. Clim Past 7:527–542. doi:10.5194/cp-7-527-2011 CrossRefGoogle Scholar
  77. van Oldenborgh GJ, van Ulden A (2003) On the relationship between global warming, local warming in the Netherlands and changes in circulation in the 20th century. Int J Climatol 23:1711–1724. doi:10.1002/joc.966 CrossRefGoogle Scholar
  78. Venema V, Mestre O, Aguilar E, Auer I, Guijarro JA, Domonkos P, Vertacnik G, Szentimrey T, Stepanek P, Zahradnicek P, Viarre J, Müller-Westermeier G, Lakatos M, Williams CN, Menne M, Lindau R, Rasol D, Rustemeier E, Kolokythas K, Marinova T, Andresen L, Acquaotta F, Fratianni S, Cheval S, Klancar M, Brunetti M, Gruber C, Prohom Duran M, Likso T, Esteban P, Brandsma T (2011) (2012) Benchmarking homogenization algorithms for monthly data. Clim Past 8:89–115. doi:10.5194/cp-8-89-2012 CrossRefGoogle Scholar
  79. Walter A, Schönwiese C-D (2002) Attribution and detection of anthropogenic climate change using a backpropagation neural network. Meteorol Z 11:335–343. doi:10.1127/0941-2948/2002/0011-0335 CrossRefGoogle Scholar
  80. Walter A, Schönwiese CD (2003) Nonlinear statistical attribution and detection of anthropogenic climate change using a simulated annealing algorithm. Theor Appl Climatol 76:1–12. doi:10.1007/s00704-003-0008-5 CrossRefGoogle Scholar
  81. Wanner H, Brönnimann S, Casty C, Gyalistras D, Luterbacher J, Schmutz C, Stephenson DB, Xoplaki E (2001) North Atlantic Oscillation—concepts and studies. Surv Geophys 22:321–382. doi:10.1023/A:1014217317898 CrossRefGoogle Scholar
  82. Werner A, Schönwiese C-D (2002) A statistical analysis of the North Atlantic Oscillation and its impact on European temperature. J Atmos Ocean Sci 8:293–306. doi:10.1080/1023673021000028861 CrossRefGoogle Scholar
  83. Wijngaard JB, Klein Tank AMG, Können GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23:679–692. doi:10.1002/joc.906 CrossRefGoogle Scholar
  84. Wilks DS (2006) Statistical methods in the atmospheric sciences. Academic, Amsterdam, p 627Google Scholar
  85. Winkler P (2009a) Revision and necessary correction of the long-term temperature series of Hohenpeissenberg, 1781–2006. Theor Appl Climatol 98:259–268. doi:10.1007/s00704-009-0108-y CrossRefGoogle Scholar
  86. Winkler P (2009b) Wissenschaftshistorische Untersuchungen zur Geschichte und insbesondere zur Datenqualität der langen meteorologischen Reihen des Observatoriums Hohenpeißenberg. Berichte des Deutschen Wetterdienstes 233. Selbstverlag des Deutschen Wetterdienstes, Offenbach am Main, p 187Google Scholar
  87. Zorita E, Moberg A, Leijonhufvud L, Wilson R, Brázdil R, Dobrovolný P, Luterbacher J, Böhm R, Pfister C, Riemann D, Glaser R, Söderberg J, González-Rouco F (2010) European temperature records of the past five centuries based on documentary/instrumental information compared to climate simulations. Clim Change 101:143–168. doi:10.1007/s10584-010-9824-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Rudolf Brázdil
    • 1
    • 2
  • Pavel Zahradníček
    • 2
    • 3
  • Petr Pišoft
    • 4
  • Petr Štěpánek
    • 2
    • 3
  • Monika Bělínová
    • 1
  • Petr Dobrovolný
    • 1
    • 2
  1. 1.Institute of GeographyMasaryk UniversityBrnoCzech Republic
  2. 2.Global Change Research Centre AS CRBrnoCzech Republic
  3. 3.Czech Hydrometeorological InstituteBrnoCzech Republic
  4. 4.Department of Meteorology and Environment ProtectionCharles UniversityPragueCzech Republic

Personalised recommendations