Theoretical and Applied Climatology

, Volume 109, Issue 1–2, pp 261–270 | Cite as

Subarea characteristics of the long-range correlations and the index χ for daily temperature records over China

  • Lei Jiang
  • Naiming Yuan
  • Zuntao Fu
  • Dongxiao Wang
  • Xia Zhao
  • Xiuhua Zhu
Original Paper


Daily temperature records including daily minimum, maximum, and average temperature from 190 meteorological stations over China during 1951–2000 are analyzed from two perspectives: (a) long-term persistence in direction of time varies, and (b) standard deviation in direction of amplitude varies. By employing the detrended fluctuation analysis (DFA), we find all the temperature records are long-term correlated, while the exponent α obtained from DFA varies from different districts of China due to different climate conditions, such as the southwest monsoon, subtropical high, northeast cold vortex, and the Tibetan plateau, etc. After we take the standard deviation into account, a new index χ = α × σ, which has been proposed recently, can be obtained. By further rescaling it as \( \chi = \overline \chi - {{1} \left/ {5} \right.} \times {\sigma_{{\overline \chi }}} \), we find an obvious change of χ for these three kinds of time series, from which the whole China can be divided into two groups, which are comparatively consistent with dry/wet distributions in the south–north areas over China.



Many thanks are due to supports from National Natural Science Foundation of China (no. 40775040) and from Program of the Chinese Academy of Sciences (KLOCAW1106).


  1. Bunde A, Havlin S (2002) Power-law persistence in the atmosphere and in the oceans. Physica A 314:15CrossRefGoogle Scholar
  2. Bunde KE et al (1996) Analysis of daily temperature fluctuations. Physica A 231:393CrossRefGoogle Scholar
  3. Bunde KE et al (1998) Indication of a universal persistence law governing atmospheric variability. Phys Rev Lett 81Google Scholar
  4. Bunde A et al (2000) Correlated and uncorrelated regions in heart-rate fluctuations during sleep. Phys Rev Lett 85:3736CrossRefGoogle Scholar
  5. Bunde A et al (2001) Long term persistence in the atmosphere: global laws and tests of climate models. Physica A 302:255CrossRefGoogle Scholar
  6. Bunde A et al (2004) Return intervals of rare events in records with long-term persistence. Physica A 342:308CrossRefGoogle Scholar
  7. Bunde KE et al (2006) Long-term persistence and multifractality of river runoff records: detrended fluctuation studies. J Hydrol 322:120CrossRefGoogle Scholar
  8. Cayan DR et al (2001) Changes in the onset of spring in the western United States. Bull Am Meteorol Soc 82(3):399CrossRefGoogle Scholar
  9. Chen Z et al (2002) Effect of nonstationarities on detrended fluctuation analysis. Phys Rev E 65:041107CrossRefGoogle Scholar
  10. Chen X, Lin G, Zuntao Fu (2007) Long-range correlations in daily relative humidity fluctuations: a new index to characterize the climate regions over China. Geophys Res Lett 34:L07804CrossRefGoogle Scholar
  11. Dai AG, Trenberth KE, Karl TR (1998) Global variations in droughts and wet spells: 1900–1995. Geophys Res Lett 25:3367CrossRefGoogle Scholar
  12. Eichner JF et al (2003) Power-law persistence and trends in the atmosphere—a detailed study of long temperature records. Phys Rev E 68:046133CrossRefGoogle Scholar
  13. Fraedrich K, Blender R (2003) Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys Rev Lett 90:108510CrossRefGoogle Scholar
  14. Govindan RB et al (2001) Physica A 294:239CrossRefGoogle Scholar
  15. Govindan RB et al (2002) Global climate models violate scaling of the observed atmospheric variability. Phys Rev Lett. doi: 10.1103/PhysRevLett.89.028501, Vol. 89; Issue 2
  16. Govindan RB et al (2003) Physica A 318:529CrossRefGoogle Scholar
  17. Hansen JE, Sato M, Ruedy R et al (1998) Science 281(5379):930CrossRefGoogle Scholar
  18. Heneghan C, McDarby G (2000) Phys Rev E 62:6103CrossRefGoogle Scholar
  19. Hsu HH, Liu X (2006) Geophys Res Lett 30:2066CrossRefGoogle Scholar
  20. Hu K et al (2001) Effect of trends on detrended fluctuation analysis. Phys Rev E 64:011114CrossRefGoogle Scholar
  21. Jones PD (1988) J Clim 1(6):654CrossRefGoogle Scholar
  22. Kantelhardt JW et al (2001) Detecting long-range correlations with detrended fluctuation analysis. Physica A 295:441CrossRefGoogle Scholar
  23. Kiraly A, Janosi IM (2005) Detrended fluctuation analysis of daily temperature records: geographic dependence over Australia. Meteorol Atmos Phys 88:119CrossRefGoogle Scholar
  24. Kurnaz ML (2004a) Application of detrended fluctuation analysis to monthly average of the maximum daily temperatures to resolve different climates. Fractals 12(4):365CrossRefGoogle Scholar
  25. Kurnaz ML (2004b) Detrended fluctuation analysis as a statistical tool to monitor the climate. J Stat Mech Theor Exp P07009Google Scholar
  26. Lennartz S, Bunde A (2009) Trend evaluation in records with long-term memory: application to global warming. Geophys Res Lett 36:L16706CrossRefGoogle Scholar
  27. Ma Z, Fu C (2003) Glob Planet Chang 37:189Google Scholar
  28. Manabe S, Wetherald RT (1987) J Atmos Sci 44:1211CrossRefGoogle Scholar
  29. Manabe S, Wetherald RT, Stouffer RJ (1981) Climate Chang 3(4):336Google Scholar
  30. Monetti RA et al (2003) Long term persistence in the sea-surface temperature fluctuations. Physica A 320581Google Scholar
  31. Peng C-K et al (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685CrossRefGoogle Scholar
  32. Peng C-K et al (1995) Chaos 5:82CrossRefGoogle Scholar
  33. Pielke RA et al (2002) Int J Climatol 22:421CrossRefGoogle Scholar
  34. Robert T et al (2001) Cambridge University Press, 1~46Google Scholar
  35. Rybski D, Bunde A (2009) On the detection of trends in long-term correlated records. Physica A 388:1687CrossRefGoogle Scholar
  36. Rybski D, Bunde A, von Storch H (2008) Long-term memory in 1000 years simulated temperature records. J Geophys Res-Atmos 113(D2):D02106CrossRefGoogle Scholar
  37. Talkner P, Weber RO (2000) Power spectrum and detrended fluctuation analysis: application to daily temperatures. Phys Rev E 62(1):150CrossRefGoogle Scholar
  38. Vyushin D, Zhidkov Z, Havlin S, Bunde A, Brenner S (2004) Volcanic forcing improves atmosphere-ocean coupled general circulation model scaling performance. Geophys Res Lett 31:L10206CrossRefGoogle Scholar
  39. Weber RO, Talkner P (2001) Spectra and correlations of climate data from days to decades. J Geophys Res-Atmos 106(D17):20131CrossRefGoogle Scholar
  40. Wetherald RT, Manabe S (1999) Clim Chang 43:495CrossRefGoogle Scholar
  41. Wetherald RT, Manabe S (2002) J Geophys Res 107:4379CrossRefGoogle Scholar
  42. WMO and UNEP (1990) New York: Cambridge University PressGoogle Scholar
  43. Wu GX, Zhang YS (1998) Mon Weather Rev 126:913CrossRefGoogle Scholar
  44. Zhai PM, Pan XH (2003) Geophys Res Lett 30:1913CrossRefGoogle Scholar
  45. Zhai PM, Zhang XB, Wan H, Pan XH (2004) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18:1096CrossRefGoogle Scholar
  46. Zou XK, Zhai PM, Zhang Q (2005) Variations in droughts over China, 1951–2003. Geophys Res Lett 32:L04707CrossRefGoogle Scholar
  47. Zwiers FW (2002) Nature 416:690CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Lei Jiang
    • 1
    • 2
    • 4
  • Naiming Yuan
    • 1
  • Zuntao Fu
    • 1
    • 6
  • Dongxiao Wang
    • 2
  • Xia Zhao
    • 3
  • Xiuhua Zhu
    • 5
  1. 1.Department of Atmospheric and Oceanic Sciences and Laboratory for Climate and Ocean- Atmosphere Studies, School of PhysicsPeking UniversityBeijingChina
  2. 2.LED, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  3. 3.Laboratory of Ocean Circulation and Waves, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  4. 4.State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing ApplicationChinese Academy of SciencesBeijingChina
  5. 5.Max Planck Institute for MeteorologyHamburgGermany
  6. 6.School of PhysicsPeking UniversityBeijingChina

Personalised recommendations