Advertisement

Theoretical and Applied Climatology

, Volume 108, Issue 1–2, pp 293–300 | Cite as

Tibetan Plateau summer precipitation: covariability with circulation indices

  • Oliver BotheEmail author
  • Klaus Fraedrich
  • Xiuhua Zhu
Original Paper

Abstract

Relations between Tibetan Plateau precipitation and large-scale climate indices are studied based on the Standardized Precipitation Index (SPI) and the boreal summer season. The focus is on the decadal variability of links between the large-scale circulation and the plateau drought and wetness. Analysis of teleconnectivity of the continental northern hemisphere standardized summer precipitation reveals the Tibetan Plateau as a major SPI teleconnectivity center in south-eastern Asia connecting remote correlation patterns over Eurasia. Employing a moving window approach, changes in covariability and synchronizations between Tibetan Plateau summer SPI and climate indices are analyzed on decadal time scales. Decadal variability in the relationships between Tibetan Plateau summer SPI and the large-scale climate system is characterized by three shifts related to changes in the North Atlantic, the Indian Ocean, and the tropical Pacific. Changes in the North Atlantic variability (North Atlantic Oscillation) result in a stable level of Tibetan Plateau summer SPI variability; the response to changes in tropical Pacific variability is prominent in various indices such as Asian monsoon, Pacific/North America, and East Atlantic/Western Russia pattern.

Keywords

Tibetan Plateau Standardize Precipitation Index Pacific Decadal Oscillation Western North Pacific Circulation Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

Referees’ comments are appreciated, which helped to improve the manuscript. Financial support by the Deutsche Forschungsgemeinschaft and the Klimacampus Hamburg is appreciated. KF and XZ acknowledge support of the Max Planck Society. NCEP Reanalysis derived data is provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/, as is the AMO index. Further data is obtained from the DWD, the CPC at NOAA, the FRCGCC, the International Pacific Research Center, and the Joint Institute for the Study of the Atmosphere and Ocean.

References

  1. Alexander MA, Bladé I, Lanzante JR, Lau N-G, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Climate 15:2205–2231CrossRefGoogle Scholar
  2. Beck C, Grieser J, Rudolf B (2005) A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. Climate Status Report No. 2004, German Weather Service: Offenbach, pp. 181–190.Google Scholar
  3. Bengtsson L, Hagemann S, Hodges KI (2004) Can climate trends be calculated from reanalysis data? J Geophys Res 109:D11111. doi: 10.1029/2004JD004536 CrossRefGoogle Scholar
  4. Bordi I, Sutera A (2001) Fifty years of precipitation: some spatially remote teleconnections. Water Resources Management 15:247–280CrossRefGoogle Scholar
  5. Bordi I, Fraedrich K, Sutera A (2009) Observed drought and wetness trends in Europe: an update. Hydology and Earth System Sciences 13:1519–1530CrossRefGoogle Scholar
  6. Bothe O, Fraedrich K, Zhu X (2010) The large-scale circulations and summer drought and wetness on the Tibetan plateau. Int J Climatol 30:844–855. doi: 10.1002/joc.1946 Google Scholar
  7. Bothe O, Fraedrich K, Zhu X (2011) Large-scale circulations and Tibetan Plateau summer drought and wetness in a high-resolution climate model. Int J Climatol 31:832–846. doi: 10.1002/joc.2124 CrossRefGoogle Scholar
  8. Dai A, Wigley TML (2000) Global patterns of ENSO–induced precipitation. Geophys Res Lett 27:1283–1286. doi: 10.1029/1999GL011140 CrossRefGoogle Scholar
  9. Ding Y, Wang Z, Sun Y (2008) Inter-decadal variation of the summer precipitation in east China and its association with decreasing Asian summer monsoon Part I: Observed evidences. Int J Climatol 28:1139–1161. doi: 10.1002/joc.1615 CrossRefGoogle Scholar
  10. Ding Y, Sun Y, Wang Z, Zhu Y, Song Y (2009) Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon part II: possible causes. Int J Climatol 29:1926–1944. doi: 10.1002/joc.1759 CrossRefGoogle Scholar
  11. Efron B, Tibshirani RJ (1993) An introduction to the Bootstrap, Monographs on Statistics and Applied Probability, Vol. 57. Chapman & Hall/CRC, 436 pp.Google Scholar
  12. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080CrossRefGoogle Scholar
  13. Feng S, Hu Q (2008) How the North Atlantic Multidecadal Oscillation may have influenced the Indian summer monsoon during the past two millennia. Geophys Res Lett 35:L01707. doi: 10.1029/2007GL032484 CrossRefGoogle Scholar
  14. Flohn H (1968) Contributions to a meteorology of the Tibetan highlands. Atmospheric Science Paper 130.Google Scholar
  15. Fowler HJ, Archer DR (2005) Hydro-climatological variability in the upper Indus basin and implications for water resources. Regional hydrological impacts of climatic change—impact assessment and decision making. IAHS Publ 295:131–138Google Scholar
  16. Gershunov A, Schneider N, Barnett T (2001) Low-frequency modulation of the ENSO–Indian monsoon rainfall relationship: signal or noise? J Climate 14:2486–2492CrossRefGoogle Scholar
  17. Hahn DG, Manabe S (1975) The role of mountains in the south Asian monsoon circulation. Journal of the Atmospheric Sciences 32:1515–1541CrossRefGoogle Scholar
  18. Held IM, Ting M, Wang H (2002) Northern winter stationary waves: theory and modeling. J Climate 15:2125–2144CrossRefGoogle Scholar
  19. Hoskins BJ, Ambrizzi T (1993) Rossby wave propagation on a realistic longitudinally varying flow. Journal of the Atmospheric Sciences 50:1661–1671CrossRefGoogle Scholar
  20. Jiang J, Zhang D, Fraedrich K (1997) Historic climate variability of wetness in east China (960–1992): a wavelet analysis. Int J Climatol 17:969–981CrossRefGoogle Scholar
  21. Kaplan A, Cane M, Kushnir Y, Clement A, Blumenthal M, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18567–18589CrossRefGoogle Scholar
  22. Kumar K, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284: 2156–2159, doi: 10.1126/science.284.5423.2156, http://www.sciencemag.org/cgi/reprint/284/5423/2156.pdf.
  23. Li C, Yanai M (1996) The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J Climate 9:358–375CrossRefGoogle Scholar
  24. Li J, Wu Z, Jiang Z, He J (2010) Can global warming strengthen the East Asian summer monsoon? J Climate 23:6696–6705. doi: 10.1175/2010JCLI3434.1 CrossRefGoogle Scholar
  25. Liu X, Yin Z-Y (2001) Spatial and temporal variation of summer precipitation over the eastern Tibetan plateau and the North Atlantic Oscillation. J Climate 14:2896–2909CrossRefGoogle Scholar
  26. Mantua NJ, Hare SR (2002) The Pacific Decadal Oscillation. J Oceanogr 58:35–44CrossRefGoogle Scholar
  27. Marshall J, Kushnir Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell J, McCartney M, Saravanan R, Visbeck M (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21:1863–1898. doi: 10.1002/joc.693 CrossRefGoogle Scholar
  28. McKee TB, Doeskin NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. 8th Conference on applied climatology, American Meteorological Society, Anaheim, Canada, 179–184.Google Scholar
  29. NOAA (2005–2008) Northern hemisphere teleconnection patterns. Online resource: http://www.cpc.noaa.gov/data/teledoc/telecontents.shtml.
  30. NOAA (2008) Previous ENSO events. Online resource: http://www.cpc.noaa.gov/products/monitoring_and_data/ENSO_connections.shtml.
  31. Qian W, Hu Q, Zhu Y, Lee D-K (2003) Centennial-scale dry–wet variations in east Asia. Clim Dyn 21:77–89. doi: 10.1007/s00382-003-0319-3 CrossRefGoogle Scholar
  32. Qian W, Lin X, Zhu Y, Xu Y, Fu J (2007) Climatic regime shift and decadal anomalous events in China. Clim Chang 84:167–189. doi: 10.1007/s10584-006-9234-z CrossRefGoogle Scholar
  33. Saeed S, Müller WA, Hagemann S, Jacob D (2010) Circumglobal wave train and the summer monsoon over northwestern India and Pakistan: the explicit role of the surface heat low. Climate Dynamics. In press. doi:  10.1007/s00382-010-0888-x
  34. Saeed S, Müller WA, Hagemann S, Jacob D, Mujumdar M, Krishnan R (2011) Precipitation variability over the South Asian monsoon heat low and associated teleconnections. Geophys Res Lett 38:L08702. doi: 10.1029/2011GL046984 CrossRefGoogle Scholar
  35. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:361–363Google Scholar
  36. Sato T, Kimura F (2007) How does the Tibetan plateau affect the transition of Indian monsoon rainfall? Mon Weather Rev 135:2006–2015. doi: 10.1175/MWR3386.1 CrossRefGoogle Scholar
  37. Sienz F, Bordi I, Fraedrich K, Schneidereit A (2007) Extreme dry and wet events in Iceland: observations, simulations and scenarios. Meteorol Z 16:9–16CrossRefGoogle Scholar
  38. Strong C, Magnusdottir G (2008) How Rossby wave breaking over the Pacific forces the North Atlantic Oscillation. Geophys Res Lett 35:L10706. doi: 10.1029/2008GL033578 CrossRefGoogle Scholar
  39. Strong C, Magnusdottir G (2009) The role of tropospheric Rossby wave breaking in the Pacific Decadal Oscillation. J Climate 22:1819–1833. doi: 10.1175/2008JCLI2593.1 CrossRefGoogle Scholar
  40. Tang M, Reiter ER (1984) Plateau monsoons of the northern hemisphere: a comparison between north America and Tibet. Mon Weather Rev 112:617–637CrossRefGoogle Scholar
  41. Vallis GK, Gerber EP (2008) Local and hemispheric dynamics of the North Atlantic Oscillation, annular patterns and the zonal index. Dynamics of Atmospheres and Oceans 44:184–212. doi: 10.1016/j.dynatmoce.2007.04.003 CrossRefGoogle Scholar
  42. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Weather Rev 109:784–812CrossRefGoogle Scholar
  43. Wang B, Fan Z (1999) Choice of south Asian summer monsoon indices. Bull Am Meteorol Soc 80:629–638CrossRefGoogle Scholar
  44. Wang B, Wu R, Lau KM (2001) Interannual variability of the Asian summer monsoon: contrasts between the Indian and the western north Pacific–east Asian monsoons. J Climate 14:4073–4090CrossRefGoogle Scholar
  45. Wang B, Bao Q, Hoskins B, Wu G, Liu Y (2008) Tibetan Plateau warming and precipitation changes in east Asia. Geophys Res Lett 35:L14702. doi: 10.1029/2008GL034330 CrossRefGoogle Scholar
  46. Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–926CrossRefGoogle Scholar
  47. Wu H, Svoboda MD, Hayes MJ, Wilhite DA, Wen F (2007) Appropriate application of the standardized precipitation index in arid locations and dry seasons. Int J Climatol 27:65–79. doi: 10.1002/joc.1371 CrossRefGoogle Scholar
  48. Yun K, Ha K, Wang B, Ding R (2010) Decadal cooling in the Indian summer monsoon after 1997/1998 El Niño and its impact on the East Asian summer monsoon. Geophys Res Lett 37:L01805. doi: 10.1029/2009GL041539 CrossRefGoogle Scholar
  49. Zhang R, Delworth TL (2007) Impact of the Atlantic Multidecadal Oscillation on North Pacific climate variability. Geophys Res Lett 34:L23708. doi: 10.1029/2007GL031601 CrossRefGoogle Scholar
  50. Zhu X, Bothe O, Fraedrich K (2011) Summer atmospheric bridging between Europe and East Asia: influences on drought and wetness on the Tibetan Plateau. Quat Int 236:151–157. doi: 10.1016/j.quaint.2010.06.015 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Klimacampus, CliSAPUniversität Hamburg, c/o Max Planck Institut für MeteorologieHamburgGermany
  2. 2.Klimacampus, Meteorologisches InstitutUniversität HamburgHamburgGermany
  3. 3.Max-Planck-Institut für MeteorologieHamburgGermany

Personalised recommendations