Theoretical and Applied Climatology

, Volume 108, Issue 1–2, pp 85–104 | Cite as

Daily relative humidity projections in an Indian river basin for IPCC SRES scenarios

  • Aavudai Anandhi
  • V. V. Srinivas
  • D. Nagesh Kumar
  • Ravi S. Nanjundiah
Original Paper


A two-stage methodology is developed to obtain future projections of daily relative humidity in a river basin for climate change scenarios. In the first stage, Support Vector Machine (SVM) models are developed to downscale nine sets of predictor variables (large-scale atmospheric variables) for Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) (A1B, A2, B1, and COMMIT) to RH in a river basin at monthly scale. Uncertainty in the future projections of RH is studied for combinations of SRES scenarios, and predictors selected. Subsequently, in the second stage, the monthly sequences of RH are disaggregated to daily scale using k-nearest neighbor method. The effectiveness of the developed methodology is demonstrated through application to the catchment of Malaprabha reservoir in India. For downscaling, the probable predictor variables are extracted from the (1) National Centers for Environmental Prediction reanalysis data set for the period 1978–2000 and (2) simulations of the third-generation Canadian Coupled Global Climate Model for the period 1978–2100. The performance of the downscaling and disaggregation models is evaluated by split sample validation. Results show that among the SVM models, the model developed using predictors pertaining to only land location performed better. The RH is projected to increase in the future for A1B and A2 scenarios, while no trend is discerned for B1 and COMMIT.



The authors express their gratitude to the editor and the reviewer who have provided constructive and helpful comments. This work is partially supported by the Dept. of Science and Technology, Govt. of India, through AISRF project no. DST/INT/AUS/P-27/2009. The third author acknowledges support from the Ministry of Earth Sciences, Govt. of India, through project no. MoES/ATMOS/PP-IX/09. The support from the Drought Monitoring Cell, Government of Karnataka, is acknowledged. Special thanks are also due to our alumnus Dr. Shivam and Dr. Vidyunmala, Indian Institute of Science, Bangalore, for their valuable inputs.


  1. Alley R, Berntsen T, Bindoff N, Chen Z, Chidthaisong A, Friedlingstein P, Gregory J, Hegerl G, Heimann M, Hewitson B, Hoskins B, Joos F, Jouze LJ, Kattsov V, Lohmann U, Manning M, Matsuno T, Molina M, Nicholls N, Overpeck J, Qin D, Raga G, Ramaswamy V, Ren J, Rusticucci M, Solomon S, Somerville R, Stocker T, Stott P, Stouffer R, Whetton P, Wood R, Wratt D (2007) Climate change 2007: the physical science basis. Summary for Policymakers. IPCC eds.: Intergovernmental Panel on Climate Change. Geneva, SwitzerlandGoogle Scholar
  2. Anandhi A (2008) Impact assessment of climate change on hydrometeorology of Indian river basin for IPCC SRES scenarios. Ph.D. thesis, Indian Institute of Science, Bangalore, IndiaGoogle Scholar
  3. Anandhi A (2011) Uncertainties in downscaled relative humidity for a semi-arid region in India. J Earth Syst Sci 120(3):375–386. doi:JESS-D-10-00145 Google Scholar
  4. Anandhi A, Srinivas VV, Nanjundiah RS, Kumar DN (2008) Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine. Int J Climatol 28(3):401–420CrossRefGoogle Scholar
  5. Anandhi A, Srinivas VV, Kumar DN, Nanjundiah RS (2009) Role of predictors in downscaling surface temperature to river basin in India for IPCC SRES scenarios using support vector machine. Int J Climatol 29(4):583–603CrossRefGoogle Scholar
  6. Bader D (ed) (2004) An appraisal of coupled climate model simulations. Report UCRL-TR-202550. Lawrence Livermore National Laboratory, Livermore, CAGoogle Scholar
  7. Brown R, Rosenberg N (1997) Sensitivity of crop yield and water use to change in a range of climatic factors and CO2 concentrations: a simulation study applying EPIC to the central United States. Agric For Meteorol 83(3–4):171–203CrossRefGoogle Scholar
  8. Cahynová M, Huth R (2010) Circulation vs. climatic changes over the Czech Republic: a comprehensive study based on the COST733 database of atmospheric circulation classifications. Physics and Chemistry of the Earth, Parts A/B/C 35(9–12):422–428CrossRefGoogle Scholar
  9. Courant R, Hilbert D (1970) Methods of mathematical physics, vols. I and II. Wiley Interscience, New YorkGoogle Scholar
  10. Dai A (2006) Recent climatology, variability, and trends in global surface humidity. J Clim 19(15):3589–3606CrossRefGoogle Scholar
  11. Debele B, Srinivasan R, Parlange J (2007) Accuracy evaluation of weather data generation and disaggregation methods at finer timescales. Advances in Water Resources 30(5):1286–1300. doi:10.1016/j.advwatres.2006.11.009 CrossRefGoogle Scholar
  12. Doblas-Reyes FJ, Hagedorn R, Palmer TN (2006) Developments in dynamical seasonal forecasting relevant to agricultural management. Clim Res 33(1):19–26. doi:10.3354/cr033019 CrossRefGoogle Scholar
  13. Doty B, Kinter JI (1993) The Grid Analysis and Display System (GrADS): a desktop tool for earth science visualization. Paper presented at the American Geophysical Union 1993 Fall Meeting, San Francisco, CA, 6–10 DecemberGoogle Scholar
  14. Easterling W, Rosenberg N, McKenney M, Jones C, Dyke P, Williams J (1992) Preparing the erosion productivity impact calculator (EPIC) model to simulate crop response to climate change and the direct effects of CO2. Special issue: methods for assessing regional agricultural consequences of climate change. Agric For Meteorol 59(1–2):17–34CrossRefGoogle Scholar
  15. Enke W, Spekat A (1997) Downscaling climate model outputs into local and regional weather elements by classification and regression. Clim Res 8:195–207CrossRefGoogle Scholar
  16. Frei C, Alberghi S, Amici M, Anagnostopoulou C, Bardossy A, Cacciamani C, Goodess C, Haylock M, Hundecha Y, Maheras P, Marchesi S, Morgillo A, Pavan V, Plaut G, Schmidli J, Smith T, Simonnet E, Tolika K, Tomozeiu R, Tosi E, Wilby R (2005) STARDEX-recommendations on the most reliable predictor variables and evaluation of inter-relationships (deliverable D13) (no. EVK2-CT-2001-00115). At: Accessed 24 Sept 2010
  17. Gaffen DJ, Ross RJ (1999) Climatology and trends of U.S. surface humidity and temperature. J Clim 12(3):811–828CrossRefGoogle Scholar
  18. Green H, Kozek A (2003) Modeling weather data by approximate regression quantiles. Journal of Anziam 44(E):C229–C248Google Scholar
  19. Helsel DR, Hirsch RM (2002) Chapter A3. Techniques of water-resources investigations, vol 4. U.S. Geological SurveyGoogle Scholar
  20. Hirai G, Okumura T, Takeuchi S, Tanaka O, Chujo H (2000) Studies on the effect of the relative humidity of the atmosphere on the growth and physiology of rice plants: effects of relative humidity during the light and dark periods on the growth. Plant Production Science 3(2):129–133CrossRefGoogle Scholar
  21. Hofer M, Mölg T, Marzeion B, Kaser G (2010) Empirical-statistical downscaling of reanalysis data to high-resolution air temperature and specific humidity above a glacier surface (Cordillera Blanca, Peru). J Geophys Res 115(D12):D12120. doi:10.1029/2009jd012556 CrossRefGoogle Scholar
  22. Houghton J, Ding Y, Griggs D, Noguer M, van der Linden P, Dai X, Maskell K, Johnson C (eds) (2001) Climate change 2001: the scientific basis. Cambridge University Press, CambridgeGoogle Scholar
  23. Hush DR, Horne BG (1993) Progress in supervised neural networks: what s new since Lippmann? IEEE Signal Processing Magazine 10:8–39CrossRefGoogle Scholar
  24. Huth R (2005) Downscaling of humidity variables: a search for suitable predictors and predictands. Int J Climatol 25:243–250CrossRefGoogle Scholar
  25. Jones RH, Westra S, Sharma A (2010) Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys Res Lett 37(22):L22805. doi:10.1029/2010gl045081 CrossRefGoogle Scholar
  26. Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467(7318):951–954CrossRefGoogle Scholar
  27. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  28. Keerthi SS, Lin C-J (2003) Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput 15(7):1667–1689CrossRefGoogle Scholar
  29. Koch S, Aksakal A, McQueen J (1997) The influence of mesoscale humidity and evapotranspiration fields on a model forecast of a cold-frontal squall line. Mon Weather Rev 125(3):384–409CrossRefGoogle Scholar
  30. Kostopoulou E, Giannakopoulos C, Anagnostopoulou C, Tolika K, Maheras P, Vafiadis M, Founda D (2007) Simulating maximum and minimum temperature over Greece: a comparison of three downscaling techniques. Theor Appl Climatol 90(1):65–82. doi:10.1007/s00704-006-0269-x CrossRefGoogle Scholar
  31. Kottegoda NT, Rosso R (1998) Statistics, probability, and reliability for civil and environmental engineers. International edition. McGraw-Hill, ColumbusGoogle Scholar
  32. Lall U, Sharma A (1996) A nearest neighbor bootstrap for time series resampling. Water Resourses Research 32(3):679–693CrossRefGoogle Scholar
  33. Lin H-T, Lin C-J (2003) A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Department of Computer Science and Information Engineering. National Taiwan University, TaiwanGoogle Scholar
  34. Maurer EP, Hidalgo HG, Das T, Dettinger MD, Cayan DR (2010) The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol Earth Syst Sci 14(6):1125–1138. doi:10.5194/hess-14-1125-2010 CrossRefGoogle Scholar
  35. Mercer J (1909) Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, London, A 209:415–446CrossRefGoogle Scholar
  36. Monteith J (1981) Evaporation and surface temperature. Q J R Meteorol Soc 107(451):1–27Google Scholar
  37. Neitsch S, Arnold J, Kiniry J, Williams J (2001) Soil and water assessment tool theoretical documentation. Blackland Research Center. Texas Agricultural Experiment Station, TempleGoogle Scholar
  38. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21(1):1–25CrossRefGoogle Scholar
  39. O Gorman PA, Muller CJ (2010) How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations? Environ Res Lett 5(2):025207CrossRefGoogle Scholar
  40. Parthasarathy B, Munot AA, Kothawale DR (1994) All-India monthly and seasonal rainfall series: 1871–1993. Theor Appl Climatol 49(4):217–224. doi:10.1007/bf00867461 CrossRefGoogle Scholar
  41. Reichler T, Kim J (2008) How well do coupled models simulate today s climate? Bull Am Meteorol Soc 89(3):303–311. doi:10.1175/BAMS-89-3-303 CrossRefGoogle Scholar
  42. Schmidli J, Frei C, Vidale PL (2006) Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. Int J Climatol 26(5):679–689. doi:10.1002/joc.1287 CrossRefGoogle Scholar
  43. Schoof JT, Pryor SC (2003) Evaluation of the NCEP–NCAR reanalysis in terms of synoptic-scale phenomena: a case study from the Midwestern USA. Int J Climatol 23(14):1725–1741. doi:10.1002/joc.969 CrossRefGoogle Scholar
  44. Simmons AJ, Willett KM, Jones PD, Thorne PW, Dee DP (2010) Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J Geophys Res 115(D1):D01110. doi:10.1029/2009jd012442 CrossRefGoogle Scholar
  45. Stanghellini C, de Jong T (1995) A model of humidity and its applications in a greenhouse. Agric For Meteorol 76(2):129–148CrossRefGoogle Scholar
  46. Suykens JAK (2001) Nonlinear modelling and support vector machines. In: IEEE Instrumentation and measurement technology conference, Budapest, Hungary, 2001. pp 287–294Google Scholar
  47. Teutschbein C, Wetterhall F, Seibert J (2011) Evaluation of different downscaling techniques for hydrological climate—change impact studies at the catchment scale. Climate Dynamics (in press). 1–19. doi:10.1007/s00382-010-0979-8
  48. Tripathi S, Srinivas VV, Nanjundiah RS (2006) Downscaling of precipitation for climate change scenarios: a support vector machine approach. J Hydrol 330:621–640. doi:10.1016/j.jhydrol.2006.04.030 CrossRefGoogle Scholar
  49. Vapnik V (1995) The nature of statistical learning theory. Springer, New YorkGoogle Scholar
  50. Vapnik V (1998) Statistical learning theory. Wiley, New YorkGoogle Scholar
  51. Wang JXL, Gaffen DJ (2001) Late-twentieth-century climatology and trends of surface humidity and temperature in China. J Clim 14(13):2833–2845CrossRefGoogle Scholar
  52. Wetterhall F, Halldin S, Xu C (2005) Statistical precipitation downscaling in central Sweden with the analogue method. J Hydrol 306:136–174CrossRefGoogle Scholar
  53. Wetterhall F, Halldin S, Xu CY (2007) Seasonality properties of four statistical-downscaling methods in central Sweden. Theor Appl Climatol 87(1):123–137. doi:10.1007/s00704-005-0223-3 CrossRefGoogle Scholar
  54. Wetterhall F, Bárdossy A, Chen D, Halldin S, C-y Xu (2009) Statistical downscaling of daily precipitation over Sweden using GCM output. Theor Appl Climatol 96(1):95–103. doi:10.1007/s00704-008-0038-0 CrossRefGoogle Scholar
  55. Widmann M, Bretherton CS, Salathe EP Jr (2003) Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor. J Clim 16(5):799–816CrossRefGoogle Scholar
  56. Wilby RL, Hay LE, Leavesley GH (1999) A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River basin, Colorado. J Hydrol 225(1–2):67–91CrossRefGoogle Scholar
  57. Willett K, Jones PD, Thorne PW, Gillett N (2010) A comparison of large scale changes in surface humidity over land in observations and CMIP3 general circulation models. Environ Res Lett 5(2):025210CrossRefGoogle Scholar
  58. Wright JS, Sobel A, Galewsky J (2010) Diagnosis of zonal mean relative humidity changes in a warmer climate. J Clim 23(17):4556–4569CrossRefGoogle Scholar
  59. Wypych A (2010) Twentieth century variability of surface humidity as the climate change indicator in Kraków (Southern Poland). Theor Appl Climatol 101(3):475–482. doi:10.1007/s00704-009-0221-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Aavudai Anandhi
    • 1
    • 2
  • V. V. Srinivas
    • 1
  • D. Nagesh Kumar
    • 1
    • 3
  • Ravi S. Nanjundiah
    • 4
  1. 1.Department of Civil EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.CUNY Institute for Sustainable CitiesCity University of New YorkNew YorkUSA
  3. 3.Center for Earth SciencesIndian Institute of ScienceBangaloreIndia
  4. 4.Centre for Atmospheric & Oceanic SciencesIndian Institute of ScienceBangaloreIndia

Personalised recommendations