Theoretical and Applied Climatology

, Volume 107, Issue 3–4, pp 599–609 | Cite as

Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climate change

  • Adriano MazzarellaEmail author
  • Nicola Scafetta
Original Paper


The North Atlantic Oscillation (NAO) obtained using instrumental and documentary proxy predictors from Eurasia is found to be characterized by a quasi 60-year dominant oscillation since 1650. This pattern emerges clearly once the NAO record is time integrated to stress its comparison with the temperature record. The integrated NAO (INAO) is found to well correlate with the length of the day (since 1650) and the global surface sea temperature record HadSST2 and HadSST3 (since 1850). These findings suggest that INAO can be used as a good proxy for global climate change, and that a ~60-year cycle exists in the global climate since at least 1700. Finally, the INAO ~60-year oscillation well correlates with the ~60-year oscillations found in the historical European aurora record since 1700, which suggests that this ~60-year dominant climatic cycle has a solar–astronomical origin.


North Atlantic Oscillation Atlantic Multidecadal Oscillation Tide Gauge Record Zonal Wind Speed Circumpolar Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agnihotri R, Dutta K (2003) Centennial scale variations in monsoonal rainfall (Indian, east equatorial and Chinese monsoons): manifestations of solar variability. Curr Sci 85:459–463Google Scholar
  2. Bath A (1974) Spectral analysis in geophysics. Elsevier, New York, 563 ppGoogle Scholar
  3. Black DE, Peterson LC, Overpeck JT, Kaplan A, Evans MN, Kashgarian M (1999) Eight centuries of North Atlantic ocean atmosphere. Science 286:1709–1713CrossRefGoogle Scholar
  4. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi: 10.1029/2005JD006548 CrossRefGoogle Scholar
  5. Camuffo D, Bertolin C, Barriendos M, Dominguez-Castro F, Cocheo C, Enzi S, Sghedoni M, Valle A, Garnier E, Alcoforado M-J, Xoplaki E, Luterbacher J, Diodato N, Maugeri M, Nunes MN, Rodriguez R (2010) 500 year temperature reconstruction in the Mediterranean Basin by means of documentary data and instrumental observations. Clim Change 101:169–199CrossRefGoogle Scholar
  6. Enghoff MB, Pedersen JOP, Uggerhøj UI, Paling SM, Svensmark H (2011) Aerosol nucleation induced by a high energy particle beam. Geophys Res Lett 38:L09805CrossRefGoogle Scholar
  7. Gleisner H, Thejll P (2003) Patterns of tropospheric response to solar variability. Geophys Res Lett 30:1711. doi: 10.1029/2003GL017129 CrossRefGoogle Scholar
  8. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  9. IPCC, In Solomon S et al. (Eds) Climate change 2007 (2007) The Physical Science Basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, CambridgeGoogle Scholar
  10. Jevrejeva S, Moore JC, Grinsted A, Woodworth PL (2008) Recent global sea level acceleration started over 200 years ago? Geophys Res Lett 35:L08715CrossRefGoogle Scholar
  11. Jones PD, Jónsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int J Climatol 17:1433–1450CrossRefGoogle Scholar
  12. Kennedy JJ, Rayner NA, Smith RO, Saunby M, Parker DE (2011a) Reassessing biases and other uncertainties in sea-surface temperature observations since 1850 part 1: measurement and sampling errors. J Geophys Res 116: D14103. doi: 10.1029/2010JD015218
  13. Kennedy JJ, Rayner NA, Smith RO, Saunby M, Parker DE (2011b) Reassessing biases and other uncertainties in sea-surface temperature observations since 1850 part 2: biases and homogenisation. J Geophys Res 116: D14104. doi: 10.1029/2010JD015220
  14. Klyashtorin LB, Borisov V, Lyubushin A (2009) Cyclic changes of climate and major commercial stocks of the Barents Sea. Mar Biol Res 5:4–17CrossRefGoogle Scholar
  15. Knudsen MF, Seidenkrantz M, Jacobsen BH, Kuijpers A (2011) Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nat Commun 2:178. doi: 10.1038/ncomms1186 CrossRefGoogle Scholar
  16. Komitov B (2009) The “Sun–climate” relationship. II. The “cosmogenic” beryllium and the middle latitude aurora. Bulgarian Astronomical Journal 12:75–90Google Scholar
  17. Krivsky L, Pejml K (1988) Solar activity, aurorae and climate in Central Europe in the last 1000 years. Bull Astron Inst Chechosl Acad Sci No.75.Google Scholar
  18. Lamb HH (1972) Climate, present, past and future, Methuen London, 613 ppGoogle Scholar
  19. Lambeck K (1980) The Earth's variable rotation, Cambridge University Press, 449 pp.Google Scholar
  20. Lean J (2005) Living with a variable sun. Phys Today 6:32–38CrossRefGoogle Scholar
  21. Luterbacher J, Schmutz C, Gyalistras D, Xoplaki E, Wanner H (1999) Reconstruction of monthly NAO and EU indices back to AD 1675. Geophys Res Lett 26(17):2745–2748CrossRefGoogle Scholar
  22. Loehle C, Scafetta N (2011) Climate change attribution using empirical decomposition of climatic data. Open Atmos Sci J 5: 74–86CrossRefGoogle Scholar
  23. Luterbacher J, Xoplaki E, Dietrich D, Jones PD, Davies TD, Portis D, Gonzalez-Rouco JF, von Storch H, Gyalistras D, Casty C, Wanner H (2002) Extending North Atlantic oscillation reconstructions back to 1500. Atmos Sci Lett 2:114–124CrossRefGoogle Scholar
  24. Mazzarella A (2007) The 60-year modulation of global air temperature: the Earth's rotation and atmospheric circulation connection. Theor Appl Climatol 88:193–199CrossRefGoogle Scholar
  25. Mazzarella A (2008) Solar forcing of changes in atmospheric circulation, earth's rotation and climate. Open Atmos Sci J 2:181–184CrossRefGoogle Scholar
  26. Mazzarella A (2009) Sun climate linkage now confirmed. Energ Environ 20:123–130CrossRefGoogle Scholar
  27. North G, Biondi F, Bloomfield P, Christy JR, Cuffey KM, Dickinson RE, Druffel ERM, Nychka D, Otto-Bliesner B, Roberts N, Turekian KK, Wallace JM, Kraucunas I (2006) Surface temperature reconstructions for the last 2,000 years. Natl. Acad. Press, WashingtonGoogle Scholar
  28. Ogurtsov MG, Nagovitsyn YA, Kocharov GE, Jungner H (2002) Long-period cycles of the Sun's activity recorded in direct solar data and proxies. Sol Phys 211:371–394CrossRefGoogle Scholar
  29. Patterson RT, Prokoph A, Chang A (2004) Late Holocene sedimentary response to solar and cosmic ray activity influenced climate variability in the NE Pacific. Sediment Geol 172:67–84CrossRefGoogle Scholar
  30. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Globally complete analyses of sea surface temperature, sea ice and night marine air temperature, 1871–2000. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  31. Rogers JC (1984) The association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Mon Weather Rev 112:1999–2015CrossRefGoogle Scholar
  32. Scafetta N (2009) Empirical analysis of the solar contribution to global mean air surface temperature change. J Atmos Sol Terr Phys 71:1916–1923CrossRefGoogle Scholar
  33. Scafetta N (2010) Empirical evidence for a celestial origin of the climate oscillations and its implications. J Atmos Sol Terr Phys. doi: 10.1016/j.jastp.2010.04.015
  34. Silverman SM (1992) Secular variation of the aurora for the past 500 years. Rev Geophys 30:333–351CrossRefGoogle Scholar
  35. Stephenson FR, Morrison LV (1995) Long-term fluctuations in Earth's rotation: 700 BC to AD 1990. Phil Trans R Soc A 35:165–202CrossRefGoogle Scholar
  36. Tinsley BA (2008) The global atmospheric electric circuit and its effects on cloud microphysics. Rep Prog Phys 71:066801CrossRefGoogle Scholar
  37. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science 324:78–80. doi: 10.1126/science.1166349 CrossRefGoogle Scholar
  38. Wolff CL, Patrone PN (2010) A new way that planets can affect the sun. Sol Phys 266:227–246CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Meteorological Observatory, Department of Earth ScienceUniversity of Naples Federico IINaplesItaly
  2. 2.Active Cavity Radiometer Irradiance Monitor (ACRIM) LabCoronadoUSA
  3. 3.Duke UniversityDurhamUSA

Personalised recommendations