Theoretical and Applied Climatology

, Volume 107, Issue 3–4, pp 375–387 | Cite as

Estimation of the dispersion of an accidental release of radionuclides and toxic materials based on weather type classification

  • Róbert Mészáros
  • Ádám Leelőssy
  • Csilla Vincze
  • Mihály Szűcs
  • Tibor Kovács
  • István Lagzi
Original Paper


We investigate the influence of the regional-scale weather types on the atmospheric dispersion processes of the air pollutants originated from point sources. Hypothetical accidents were simulated with two different dispersion models. During a year’s test period, the 6-h emission of a radionuclide from the Paks Nuclear Power Plant (Paks NPP, Hungary) was assumed every day and the transport and deposition of the radionuclide was simulated by the Eulerian TREX dispersion model over the Central European region. In addition, the ALOHA Gaussian air dispersion model was also used for the local environment of the Paks NPP to simulate hypothetical hourly releases of ammonia during a 10-year period. During both types of model simulations, the dispersion of the plume for each time was analysed and tested with consideration of 13 circulation types corresponding to daily weather patterns over the Carpathian Basin. There are significant correlations between circulation types and plume directions and structures both in local and regional scales. The daily circulation pattern can be easily obtained from weather analyses; the expected size and direction of polluted area after an accidental release can be quickly estimated even before an accident occurs. However, this fast method cannot replace or neglect dispersion model simulations. It gives a ‘first guess’ and a fast estimation on the direction of the plume and can provide sufficient information for decision-making strategies.


Dispersion Model Weather Type Circulation Type Accidental Release Carpathian Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank András Horányi and László Kullmann (Hungarian Meteorological Service) for the ALADIN data and Csaba Károssy (University of West Hungary, Szombathely) for the preparation of the series of Péczely’s weather type. Weather data were collected and processed by the Hungarian Meteorological Service. This research is supported by Hungarian Research Found (OTKA K68253 and K81933). The Project is supported by the European Union and co-financed by the European Social Fund (grant agreement no. TAMOP 4.2.1./B-09/1/KMR-2010–0003).


  1. Anagnostopoulou C, Tolika K, Maheras P (2009) Classification of circulation types: a new flexible automated approach applicable to NCEP and GCM datasets. Theor Appl Climatol 96:3–15CrossRefGoogle Scholar
  2. Babolcsai G, Hirsch T (2006) Characteristics and synoptic classification of heavy snowfall events in Budapest for the period 1953–2003. Időjárás 110:155–173Google Scholar
  3. Baklanov A, Sørensen JH (2001) Parameterisation of radionuclide deposition in atmospheric long-range transport modelling. Phys Chem Earth (B) 26:787–799CrossRefGoogle Scholar
  4. Bartholy J, Pongrácz R, Pattantyús-Ábrahám M (2009) Analyzing the genesis, intensity, and tracks of western Mediterranean cyclones. Theor Appl Climatol 96:133–144CrossRefGoogle Scholar
  5. Bednorz E (2009) Synoptic conditions for rapid snowmelt in the Polish–German lowlands. Theor Appl Climatol 97:279–286CrossRefGoogle Scholar
  6. Brádka J, Dřevikovský A, Gregor Z, Kolesár J (1961) Weather on the territory of Bohemia and Moravia in typical weather situations. Hydrometeorological Institute, Prague, p 32 (in Czech)Google Scholar
  7. Bubbico R, Mazzarotta B (2008) Accidental release of toxic chemicals: influence of the main input parameters on consequence calculation. J Hazard Mater 151:394–406CrossRefGoogle Scholar
  8. Buchanan CM, Beverlandb IJ, Healc MR (2002) The influence of weather-type and long-range transport on airborne particle concentrations in Edinburgh, UK. Atmos Environ 36:5343–5354CrossRefGoogle Scholar
  9. Cahynová M, Huth R (2009a) Changes of atmospheric circulation in central Europe and their influence on climatic trends in the Czech Republic. Theor Appl Climatol 96:57–68CrossRefGoogle Scholar
  10. Cahynová M, Huth R (2009b) Enhanced lifetime of atmospheric circulation types over Europe: fact or fiction? Tellus 61A:407–416Google Scholar
  11. Casado MJ, Pastor MA, Doblas-Reyes FJ (2009) Euro-Atlantic circulation types and modes of variability in winter. Theor Appl Climatol 96:17–29CrossRefGoogle Scholar
  12. Demuzere M, Trigo RM, Vila-Guerau de Arellano J, van Lipzig NPM (2009) The impact of weather and atmospheric circulation on O3 and PM10 levels at a rural mid-latitude site. Atmos Chem Phys 9:2695–2714CrossRefGoogle Scholar
  13. Dombovári P, Ranga T, Nényei Á, Bujtás T, Kovács T, Jobbágy V, Vincze C, Molnár F (2008) Új terjedésszámító szoftver fejlesztése és bevezetése a Paksi Atomerőműnél. Sugárvédelem 1:30–36 (in Hungarian)Google Scholar
  14. Enke W, Schneider F, Deuschländer T (2005) A novel scheme to derive optimized circulation pattern classifications for downscaling and forecast purposes. Theor Appl Climatol 82:51–63CrossRefGoogle Scholar
  15. Esteban P, Martin-Vide J, Mases M (2006) Daily atmospheric circulation catalogue for Western Europe using multivariate techniques. Int J Climatol 26:1501–1515CrossRefGoogle Scholar
  16. Fehér Z, Járai-Komlódi M (1996) Relationship between airborne ragweed pollen concentration and the macrosynoptic weather types in Budapest, Hungary. Ann Agric Environ Med 3:121–126Google Scholar
  17. Flocas H, Kelessis A, Helmis C, Petrakakis M, Zoumakis M, Pappas K (2009) Synoptic and local scale atmospheric circulation associated with air pollution episodes in an urban Mediterranean area. Theor Appl Climatol 95:265–277CrossRefGoogle Scholar
  18. Gyurácz J, Horváth G, Csörgő T, Bank L, Palkó S (2003) Influence of macrosynoptic weather situation on the autumn migration of birds in Hungary. Ring 25:17–36CrossRefGoogle Scholar
  19. Helmis CG, Moussiopoulos N, Flocas HA, Sahm P, Assimakopoulos VD, Naneris C, Maheras P (2003) Estimation of transboundary air pollution on the basis of synoptic-scale weather types. Int J Climatol 23:405–416CrossRefGoogle Scholar
  20. Hess P, Brezowsky H (1952) Katalog der Grosswetterlagen Europas. Ber Dt Wetterd in der US-Zone 33Google Scholar
  21. Hirsch T, Babolcsai G (2006) Characteristics and synoptic classification of heavy snowfall events in Budapest for the period 1953–2003. Időjárás 110:155–173Google Scholar
  22. Horányi A, Kertész S, Kullmann L, Radnóti G (2006) The ARPEGE/ALADIN mesoscale numerical modeling system and its application at the Hungarian Meteorological Service. Időjárás 110:203–227Google Scholar
  23. Horváth Á, Ács F, Seres AT (2008) Thunderstorm climatology analyses in Hungary using radar observations. Időjárás 112:1–13Google Scholar
  24. Huth R, Beck Ch, Philipp A, Demuzere M, Ustrnul Z, Cahynová M, Kyselý J, Tveito OE (2008) Classifications of atmospheric circulation patterns: recent advances and applications. Ann NY Acad Sci 1146:105–152CrossRefGoogle Scholar
  25. Jakala SD (2007) A GIS enabled air dispersion modeling tool for emergency management, vol 9. Papers in Resource Analysis. Saint Mary’s University of Minnesota Central Services Press, Winona, 20 ppGoogle Scholar
  26. Keim BD, Meeker LD, Slater JF (2005) Manual synoptic climate classification for the East Coast of New England (USA) with an application to PM2.5 concentration. Clim Res 28:143–154CrossRefGoogle Scholar
  27. Lagzi I, Tomlin AS, Turányi T, Haszpra L, Mészáros R, Berzins M (2001) The simulation of photochemical smog episodes in Hungary and Central Europe using adaptive gridding models. Lect Notes Comput Sci 2074:67–70CrossRefGoogle Scholar
  28. Lagzi I, Kármán D, Tomlin AS, Turányi T, Haszpra L (2004) Simulation of the dispersion of nuclear contamination using an adaptive Eulerian grid model. J Environ Radioactiv 75:59–82CrossRefGoogle Scholar
  29. Lagzi I, Mészáros R, Ács F, Tomlin AS, Haszpra L, Turányi T (2006) Description and evaluation of a coupled Eulerian transport-exchange model. Part I: model development. Időjárás 110:349–363Google Scholar
  30. Lamb HH (1972) British Isles weather types and a register of the daily sequence of circulation patterns 1861–1971. Geophysical Memoirs 116:1–85Google Scholar
  31. Lovas R, Patvarczki J, Kacsuk P, Lagzi I, Turányi T, Kullmann L, Haszpra L, Mészáros R, Horányi A, Bencsura Á, Lendvay G (2006) Air pollution forecast on the HUNGRID infrastructure. In: Joubert GR, Nagel WE, Peters FJ, Plata OG, Tirado P, Zapata EL (eds) Parallel computing: current & future issues of high-end computing. John von Neumann Institute for Computing Series 33:121–128, Jülich, Germany. ISBN 3-00-017352-8Google Scholar
  32. Makra L, Mika J, Bartzokas A, Sümeghy Z (2007) Relationship between the Péczely’s large-scale weather types and air pollution levels in Szeged, southern Hungary. Fresen Environ Bull 16:660–673Google Scholar
  33. Makra L, Mika J, Bartzokas A, Béczi R, Sümeghy Z (2009) Comparison of objective air-mass types and the Péczely weather types and their ability to classify levels of air pollutants in Szeged, Hungary. Int J Environ Pollut 36:81–98CrossRefGoogle Scholar
  34. Mészáros R, Lagzi I, Juhász Á, Szinyei D, Vincze C, Horányi A, Kullmann L, Tomlin AS (2006) Description and evaluation of a coupled Eulerian transport-exchange model. Part II: sensitivity analysis and application. Időjárás 110:365–377Google Scholar
  35. Mészáros R, Vincze C, Lagzi I (2010) Simulation of accidental release using a coupled transport (TREX) and numerical weather prediction (ALADIN) model. Időjárás 114:101–120Google Scholar
  36. Michailidou C, Maheras P, Arseni-Papadimititriou A, Kolyva-Machera F, Anagnostopoulou C (2009a) A study of weather types at Athens and Thessaloniki and their relationship to circulation types for the cold–wet period. Part I: two-step cluster analysis. Theor Appl Climatol 97:163–177CrossRefGoogle Scholar
  37. Michailidou C, Maheras P, Arseni-Papadimititriou A, Kolyva-Machera F, Anagnostopoulou C (2009b) A study of weather types at Athens and Thessaloniki and their relationship to circulation types for the cold–wet period. Part II: discriminant analysis. Theor Appl Climatol 97:179–194CrossRefGoogle Scholar
  38. Mika J (1993) Effects of the large-scale circulation on local climate in relation to GCM-outputs. Időjárás 97:21–34Google Scholar
  39. Mika J, Molnár J, Tar K (2005) Effects of macro-circulation on local climatic conditions of plant development. Phys Chem Earth 30:135–141CrossRefGoogle Scholar
  40. Milionis AE, Davies TD (2008) A comparison of temperature inversion statistics at a coastal and a non-coastal location influenced by the same synoptic regime. Theor Appl Climatol 94:225–239CrossRefGoogle Scholar
  41. Niedźwiedź T, Twardosz R, Walanus A (2009) Long-term variability of precipitation series in east central Europe in relation to circulation patterns. Theor Appl Climatol 98:337–350CrossRefGoogle Scholar
  42. NOAA and EPA (2007) ALOHA user’s manual. Office of Response and Restoration of the National Oceanic and Atmospheric Administration and Office of Emergency Management of the U.S. Environmental Protection Agency, Seattle, WA, USAGoogle Scholar
  43. Péczely G (1955) Classification of macrosynoptic situations for Hungary (in Hungarian). A makroszinoptikus helyzetek tipizálása Magyarország számára. Időjárás 59:212–217Google Scholar
  44. Péczely G (1957) Grosswetterlagen in Ungarn. Kleinere Veröffentlichungen der Zentralanstalt für Meteorologie, Budapest, 30, p 86 (in German)Google Scholar
  45. Péczely G (1959) Budapest légszennyeződése különböző makroszinoptikus helyzetekben. Időjárás 63:19–27 (in Hungarian)Google Scholar
  46. Philipp A (2009) Comparison of principal component and cluster analysis for classifying circulation pattern sequences for the European domain. Theor Appl Climatol 96:31–41CrossRefGoogle Scholar
  47. Pudykiewicz J (1989) Simulation of the Chernobyl dispersion with a 3-D hemispheric tracer model. Tellus 41B:391–412CrossRefGoogle Scholar
  48. Rimóczi-Paál A, Mika J, Szentimrey T, Csiszár I, Gyarmati G, Domonkos P, Károssy C (1997) Estimation of surface radiation balance components from METEOSAT images. Five years statistics. Adv Space Res 19:473–476CrossRefGoogle Scholar
  49. Stehlík J, Bárdossy A (2003) Statistical comparison of European circulation patterns and development of a continental scale classification. Theor Appl Climatol 76:31–46CrossRefGoogle Scholar
  50. Trigo RM, DaCamara CC (2000) Circulation weather types and their influence on the precipitation regime in Portugal. Int J Climatol 20:1559–1581CrossRefGoogle Scholar
  51. Wetterhall F, Bárdossy A, Chen D, Halldin D, Chong-yu Xu (2009) Statistical downscaling of daily precipitation over Sweden using GCM output. Theor Appl Climatol 96:95–103CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Róbert Mészáros
    • 1
  • Ádám Leelőssy
    • 1
  • Csilla Vincze
    • 1
  • Mihály Szűcs
    • 2
  • Tibor Kovács
    • 3
  • István Lagzi
    • 1
  1. 1.Department of MeteorologyEötvös Loránd UniversityBudapestHungary
  2. 2.Hungarian Meteorological ServiceBudapestHungary
  3. 3.Institute of Radiochemistry and RadioecologyUniversity of PannoniaVeszprémHungary

Personalised recommendations