Theoretical and Applied Climatology

, Volume 107, Issue 1–2, pp 59–72 | Cite as

Evidence for strengthening of the tropical Pacific Ocean surface wind speed during 1979–2001

  • Gen Li
  • Baohua RenEmail author
Original Paper


Using multiple surface wind speed (SWS) data sets and trend empirical orthogonal function analysis, we have explored the trend in SWS associated with the large-scale tropical Pacific atmospheric circulation for the period 1979–2001. The present research provides a robust evidence of strengthening of the tropical Pacific Ocean SWS during this period and the magnitude is generally in line with the finding of Wentz et al. The strengthening in SWS is closely associated with the so-called La Niña-like sea surface temperature (SST) trend pattern rather than the changes in the ENSO, ENSO Modoki, or PDO. The present results, together with those from some recent climate model simulations, suggest that global warming forcing may have caused an intensification of SWS in the tropical Pacific Ocean by inducing the La Niña-like SST trend pattern due to ocean dynamics. Meanwhile, the strengthening in the tropical Pacific Ocean surface trade winds may also feedback to enhance the La Niña-like SST trend pattern under the positive wind-upwelling dynamic feedback mechanism.


Pacific Decadal Oscillation Surface Wind Speed Tropical Pacific Ocean Trend Pattern Tropical Atmospheric Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Grant No. 40975029), the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant No. XDA05090402), and the Ph. D. Programs Foundation of Ministry of Education of China (Grant No.20093402110004). We would like to thank two anonymous reviewers for their valuable comments. We also acknowledge Dr. Abdel. Hannachi for providing the MATLAB calculation procedure of the TEOF analysis and Dr. Christopher W. Fairall for providing the MATLAB calculation procedure of the COARE3.0 algorithm. The GISTEMP T g index has been downloaded from


  1. Allan RP, Soden BJ (2007) Large discrepancy between observed and simulated precipitation trends in the ascending and descending branches of the tropical circulation. Geophys Res Lett 34:L18705. doi: 10.1029/2007GL031460 CrossRefGoogle Scholar
  2. Allen MR, Ingram WJ (2002) Constraints on future changes in the hydrological cycle. Nature 419:224–228CrossRefGoogle Scholar
  3. An SI (2003) Conditional maximum covariance analysis and its application to the tropical Indian Ocean SST and surface wind stress anomalies. J Clim 16:2932–2938CrossRefGoogle Scholar
  4. Andronova N, Penner JE, Wong T (2009) Observed and modeled evolution of the tropical mean radiation budget at the top of the atmosphere since 1985. J Geophys Res 114:D14106. doi: 10.1029/2008JD011560 CrossRefGoogle Scholar
  5. Ashok K, Yamagata T (2009) The El Niño with a difference. Nature 461:481–484CrossRefGoogle Scholar
  6. Ashok K, Behera SK, Rao AS, Weng H, Yamagata T (2007) El Niño Modoki and its teleconnection. J Geophys Res 112:C11007. doi: 10.1029/2006JC003798 CrossRefGoogle Scholar
  7. Barnosa SM, Andersen OB (2009) Trend patterns in global sea surface temperature. Int J Climatol 29:2049–2055CrossRefGoogle Scholar
  8. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163–172CrossRefGoogle Scholar
  9. Cane MA, Clement AC, Kaplan A, Kushnir Y, Pozdnyakov D, Seager R, Zebiak SE, Murtugudde R (1997) Twentieth-century sea surface temperature. Science 275:957–960CrossRefGoogle Scholar
  10. Chelton DB, Wentz FJ (2005) Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bull Amer Meteor Soc 86:1097–1115CrossRefGoogle Scholar
  11. Chen J, Carlson BE, Genio ADD (2002) Evidence for strengthening of the tropical general circulation in the 1990s. Science 295:838–841CrossRefGoogle Scholar
  12. Chou SH, Nelkin E, Ardizzone J, Atlas RM, Shie CL (2003) Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrievals, version 2 (GSSTF2). J Clim 16:3256–3273CrossRefGoogle Scholar
  13. Clement AC, Soden B (2005) The sensitivity of the tropical-mean radiation budget. J Clim 18:3189–3203CrossRefGoogle Scholar
  14. Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Clim 9:2190–2196CrossRefGoogle Scholar
  15. Collins M, Tett SFB, Cooper C (2001) The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 17:61–81CrossRefGoogle Scholar
  16. Daley R (1991) Atmospheric data analysis. Cambridge University Press, Cambridge, p 457Google Scholar
  17. Ebuchi N, Graber HC, Caruso MJ (2002) Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buy data. J Atmos Oceanic Technol 19:2049–2062CrossRefGoogle Scholar
  18. Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air–sea fluxes: updates and verification for the COARE algorithm. J Clim 16:571–591CrossRefGoogle Scholar
  19. Fang C, Wu L (2008) The role of ocean dynamics in tropical Pacific SST response to warm climate in a fully coupled GCM. Geophys Res Lett 35:L08703. doi: 10.1029/2007GL033097 CrossRefGoogle Scholar
  20. Gastineau G, Treut HL, Li L (2008) Hadley circulation changes under global warming conditions indicated by coupled climate models. Tellus Ser A 60:863–884CrossRefGoogle Scholar
  21. Hannachi A (2007) Pattern hunting in climate: a new method for finding trends in gridded climate data. Int J Climatol 27:1–15CrossRefGoogle Scholar
  22. Hansen J, Ruedy R, Sato M, Reynolds R (1996) Global surface air temperature in 1995: return to pre-Pinatubo level. Geophys Res Lett 23(13):1665–1668CrossRefGoogle Scholar
  23. Hansen J, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res 104(D24):30997–31022. doi: 10.1029/1999JD900835 CrossRefGoogle Scholar
  24. Hansen J, Ruedy R, Sato M, Imhoff M, Lawrence W, Easterling D, Peterson T, Karl T (2001) A closer look at United States and global surface temperature change. J Geophys Res 106:23947–23963. doi: 10.1029/2001JD000354 CrossRefGoogle Scholar
  25. Hansen J et al (2005) Earth’s energy imbalance: confirmation and implications. Science 308:1431–1435. doi: 10.1126/science.1110252 CrossRefGoogle Scholar
  26. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293CrossRefGoogle Scholar
  27. Hansen J, Sato M, Ruedy R, Lo K (2010) Global surface temperature change. Rev Geophys. doi: 10.1029/2010RG000345
  28. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699CrossRefGoogle Scholar
  29. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77(3):437–471CrossRefGoogle Scholar
  30. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Amer Meteor Soc 83(11):1631–1643CrossRefGoogle Scholar
  31. Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103(C9):18567–18589CrossRefGoogle Scholar
  32. Kim HM, Webster PJ, Curry JA (2009) Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science 325:77–80CrossRefGoogle Scholar
  33. Knutson TR, Manabe S (1995) Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J Clim 8:2181–2199CrossRefGoogle Scholar
  34. Larkin NK, Harrison DE (2005) On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys Res Lett 32:L13705. doi: 10.1029/2005GL022738 CrossRefGoogle Scholar
  35. Li G, Ren B, Zheng J, Yang C (2010a) Trend singular value decomposition analysis and its application to the global ocean surface latent heat flux and SST anomalies. J Clim. doi: 10.1175/2010JCLI3743.1
  36. Li G, Ren B, Yang C, Zheng J (2010b) Indices of El Niño and El Niño Modoki: an improved El Niño Modoki index. Adv Atmos Sci 27(5):1210–1220CrossRefGoogle Scholar
  37. Li G, Ren B, Yang C, Zheng J (2010c) Traditional El Niño and El Niño Modoki revisited: is El Niño Modoki linearly independent of traditional El Niño? Atmos Oceanic Sci Lett 3:70–74Google Scholar
  38. Li G, Ren B, Zheng J, Yang C (2010d) Net air–sea surface heat flux during 1984–2004 over the North Pacific and North Atlantic oceans (10°N–50°N): annual mean climatology and trend. Theor Appl Climatol. doi: 10.1007/s00704-010-0351-2
  39. Li G, Ren B, Yang C, Zheng J (2011) Revisiting the trend of the tropical and subtropical Pacific surface latent heat flux during 1977–2006. J Geophys Res. doi: 10.1029/2010JD015444
  40. Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low level winds and convergence in the tropics. J Atmos Sci 44:2418–2436CrossRefGoogle Scholar
  41. Liu Z (1998) On the role of ocean in the transient response of tropical climatology to global warming. J Clim 11:864–875CrossRefGoogle Scholar
  42. Liu J, Curry JA (2006) Variability of the tropical and subtropical ocean surface latent heat flux during 1989–2000. Geophys Res Lett 33:L05706. doi: 10.1029/2005GL024809 CrossRefGoogle Scholar
  43. Lorenz EN (1956) Empirical orthogonal functions and statistical weather prediction. Statistical Forecast Project Tech. Rep. No. 1, Department of Meteorology, MITGoogle Scholar
  44. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Amer Meteor Soc 78:1069–1080CrossRefGoogle Scholar
  45. Meehl GA, Washington WM (1996) El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature 382:56–60CrossRefGoogle Scholar
  46. Meehl GA, Washington WM, Wigley TML, Arblaster JM, Dai A (2003) Solar and greenhouse gas forcing and climate response in the twentieth century. J Clim 16(3):426–444CrossRefGoogle Scholar
  47. Mitas CM, Clement A (2005) Has the Hadley cell been strengthening in recent decades? Geophys Res Lett 32:L03809. doi: 10.029/2004GL021765 CrossRefGoogle Scholar
  48. Mitas CM, Clement A (2006) Recent behavior of the Hadley cell and tropical thermodynamics in climate models and reanalyses. Geophys Res Lett 33:L01810. doi: 10.029/2005GL024406 CrossRefGoogle Scholar
  49. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Wea Rev 110:699–706CrossRefGoogle Scholar
  50. Obukhov AM (1947) Statistically homogeneous fields on a sphere. Uspethi Mathematicheskikh Nauk 2:196–198Google Scholar
  51. Quan XW, Diaz HF, Hoerling MP (2004) Change in the tropical Hadley cell since 1950, in The Hadley Circulation: Past, Present, and Future, edited by Diaz HF and Bradley RS. Cambridge University Press, New YorkGoogle Scholar
  52. Rasmusson EM, Carpenter TH (1982) Variation in tropical sea surface temperature and surface wind fields associated with Southern Oscillation/El Niño. Mon Wea Rev 110:354–384CrossRefGoogle Scholar
  53. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 Google Scholar
  54. Santer BD et al (2005) Amplification of surface temperature trends and variability in the tropical atmosphere. Science 309:1551–1556CrossRefGoogle Scholar
  55. Seager R, Murtugudde R (1997) Ocean dynamics, thermocline adjustment, and regulation of the tropical SST. J Clim 10:521–534CrossRefGoogle Scholar
  56. Soden BJ (2000) The sensitivity of the tropical hydrological cycle to ENSO. J Clim 13:538–549CrossRefGoogle Scholar
  57. Soden BJ, Jackson DL, Ramaswamy V, Schwarzkopf MD, Huang X (2005) The radiative signature of upper tropospheric moistening. Science 310:841–844. doi: 10.1126/science.1115602 CrossRefGoogle Scholar
  58. Tanaka HL, Ishizaki N, Kitoh A (2004) Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus Ser A 56(3):250–269CrossRefGoogle Scholar
  59. Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal twentieth-century SST trends in North Atlantic. J Clim 22:1469–1481CrossRefGoogle Scholar
  60. Trenberth KE, Fasullo J, Smith L (2005) Trends and variability in column integrated atmospheric water vapor. Clim Dyn 24:741–758. doi: 10.1007/s00382-005-0017-4 CrossRefGoogle Scholar
  61. Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteor Soc 131:2961–3012CrossRefGoogle Scholar
  62. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340CrossRefGoogle Scholar
  63. Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103(C7):14451–14510CrossRefGoogle Scholar
  64. Weng SP (2010) Changes of diurnal temperature range in Taiwan and their large-scale associations: univariate and multivariate trend analyses. J Meteor Soc Jpn 88:203–226CrossRefGoogle Scholar
  65. Weng H, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129CrossRefGoogle Scholar
  66. Weng H, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674CrossRefGoogle Scholar
  67. Wentz FJ (1997) A well-calibrated ocean algorithm for SSM/I. J Geophys Res 102:8703–8718CrossRefGoogle Scholar
  68. Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring? Science 317:233–235CrossRefGoogle Scholar
  69. Wong T, Wielicki BA, Lee RB, Smith GL, Bush KA, Willis JK (2006) Reexamination of the observed decadal variability of the earth radiation budget using altitude-corrected ERBE/ERBS Nonscanner WFOV data. J Clim 19:4028–4040CrossRefGoogle Scholar
  70. Yu L, Weller RA (2007) Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull Amer Meteor Soc 88:527–539CrossRefGoogle Scholar
  71. Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the Objectively Analyzed air–sea Fluxes (OAFlux) Project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Tech. Rep. OA-2008-01, p 64Google Scholar
  72. Zhang M, Song H (2006) Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific. Geophys Res Lett 33:L12701. doi: 10.029/2006GL02594 CrossRefGoogle Scholar
  73. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–1993. J Clim 10:1004–1020CrossRefGoogle Scholar
  74. Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448:461–465CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations