Theoretical and Applied Climatology

, Volume 105, Issue 1–2, pp 167–180 | Cite as

Five centuries of Southern Moravian drought variations revealed from living and historic tree rings

  • Ulf Büntgen
  • Rudolf Brázdil
  • Petr Dobrovolný
  • Mirek Trnka
  • Tomáš Kyncl
Original Paper

Abstract

Past, present, and projected fluctuations of the hydrological cycle, associated to anthropogenic climate change, describe a pending challenge for natural ecosystems and human civilizations. Here, we compile and analyze long meteorological records from Brno, Czech Republic and nearby tree-ring measurements of living and historic firs from Southern Moravia. This unique paleoclimatic compilation together with innovative reconstruction methods and error estimates allows regional-scale May–June drought variability to be estimated back to ad 1500. Driest and wettest conditions occurred in 1653 and 1713, respectively. The ten wettest decades are evenly distributed throughout time, whereas the driest episodes occurred in the seventeenth century and from the 1840s onward. Discussion emphasizes agreement between the new reconstruction and documentary evidence, and stresses possible sources of reconstruction uncertainty including station inhomogeneity, limited frequency preservation, reduced climate sensitivity, and large-scale constraints.

References

  1. Auer I et al (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46CrossRefGoogle Scholar
  2. Brázdil R, Štěpánková P, Kyncl T, Kyncl J (2002) Fir tree-ring reconstruction on March–July precipitation in southern Moravia (Czech Republic), 1376–1996. Clim Res 20:223–239CrossRefGoogle Scholar
  3. Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe—the state of the art. Clim Change 70:363–430CrossRefGoogle Scholar
  4. Brázdil R, Trnka M, Dobrovolný P, Chromá K, Hlavinka P, Žalud Z (2009) Variability of droughts in the Czech Republic, 1881–2006. Theor Appl Climatol 97:297–315CrossRefGoogle Scholar
  5. Brázdil R, Dobrovolný P, Luterbacher J, Moberg A, Pfister C, Wheeler D, Zorita E (2010) European climate of the past 500 years: new challenges for historical climatology. Clim Change 101:7–40CrossRefGoogle Scholar
  6. Büntgen U, Esper J, Frank DC, Nicolussi K, Schmidhalter M (2005) A 1052-year tree-ring proxy for Alpine summer temperatures. Clim Dyn 25:141–153CrossRefGoogle Scholar
  7. Büntgen U, Frank DC, Wilson R, Carrer M, Urbinati C, Esper J (2008) Testing for tree-ring divergence in the European Alps. Glob Change Biol 14:2443–2453CrossRefGoogle Scholar
  8. Büntgen U, Brázdil R, Frank D, Esper J (2010a) Three centuries of Slovakian drought dynamics. Clim Dyn 35:315–329CrossRefGoogle Scholar
  9. Büntgen U, Franke J, Frank D, Wilson R, Gonzales-Rouco F, Esper J (2010b) Assessing the spatial signature of European climate reconstructions. Clim Res 41:125–130CrossRefGoogle Scholar
  10. Büntgen U, Trouet V, Frank D, Leuschner HH, Friedrichs D, Luterbacher J, Esper J (2010c) Tree-ring indicators of German summer drought over the last millennium. Quat Sci Rev 29:1005–1016CrossRefGoogle Scholar
  11. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–53Google Scholar
  12. Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370CrossRefGoogle Scholar
  13. Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5:229–237CrossRefGoogle Scholar
  14. Cook ER, Seager R, Cane MA, Stahle DW (2007) North American drought: reconstructions, causes, and consequences. Earth-Sci Rev 81:93–134CrossRefGoogle Scholar
  15. Dobrovolný P, Brázdil R, Valášek H, Kotyza O, Macková J, Halíčková M (2009) A standard palaeoclimatological approach to temperature reconstruction in historical climatology: an example from the Czech Republic, AD 1718–2007. Int J Climatol 29:1478–1492CrossRefGoogle Scholar
  16. Dobrovolný P, Moberg A, Brázdil R, Pfister C, Glaser R, Wilson R, van Engelen A, Limanówka D, Kiss A, Halíčková M, Macková J, Riemann D, Luterbacher J, Böhm R (2010) Monthly and seasonal temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Clim Change 101:69–107CrossRefGoogle Scholar
  17. Esper J, Cook ER, Krusic PJ, Peters K, Schweingruber FH (2003) Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Res 59:81–98Google Scholar
  18. Esper J, Frank DC, Büntgen U, Verstege A, Luterbacher J, Xoplaki E (2007) Long-term drought severity variations in Morocco. Geophys Res Lett 34:doi:10.1029/2007GL030844
  19. Frank DC, Büntgen U, Böhm R, Maugeri M, Esper J (2007a) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat Sci Rev 26:3298–3310CrossRefGoogle Scholar
  20. Frank D, Esper J, Cook ER, (2007b) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett 34:doi:10.1029/2007GL030571
  21. Friedrichs D, Büntgen U, Esper J, Frank D, Neuwirth B, Löffler J (2009a) Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiol 29:39–51CrossRefGoogle Scholar
  22. Friedrichs D, Trouet V, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J (2009b) Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 23:729–739CrossRefGoogle Scholar
  23. Glaser R (2008) Klimageschichte Mitteleuropas. 1200 Jahre Wetter, Klima, Katastrophen. Wissenschaftliche Buchgesellschaft, Darmstadt, p 264Google Scholar
  24. Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95CrossRefGoogle Scholar
  25. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge, p 996Google Scholar
  26. Karl TR (1986) The sensitivity of the Palmer Drought Severity Index and Palmer’s Z index to their calibration coefficients including potential evapotranspiration. J Climatol Appl Meteorol 25:77–86CrossRefGoogle Scholar
  27. Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Technical Report Tyndall Working Paper 55. Tyndall Centre for Climate Change Research, UEA: NorwichGoogle Scholar
  28. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617CrossRefGoogle Scholar
  29. Mudelsee M, Börngen M, Tetzlaff G, Grünewald U (2004) Extreme floods in central Europe over the past 500 years: role of cyclone pathway “Zugstrasse Vb”. J Geophys Res 109:D23101CrossRefGoogle Scholar
  30. Oberhuber W, Kofler W (2002) Dendroclimatological spring rainfall reconstruction for an inner Alpine dry valley. Theor Appl Climatol 71:97–106CrossRefGoogle Scholar
  31. Palmer WC (1965) Meteorological drought. Office of Climatology Research Paper no. 45, U.S. Weather Bureau. 58 ppGoogle Scholar
  32. Pauling A, Luterbacher J, Casty C, Wanner H (2006) Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26:387–405CrossRefGoogle Scholar
  33. Pfister C, Brázdil R (2006) Social vulnerability to climate in the “Little Ice Age”: an example from Central Europe in the early 1770s. Clim Past 2:115–129CrossRefGoogle Scholar
  34. Slonosky VC (2002) Wet winters, dry summers? Three centuries of precipitation data from Paris. Geophys Res Lett 29:11–14CrossRefGoogle Scholar
  35. Thornthwaite CW (1948) An approach towards a rational classification of climate. Geographical Rev 38:55–94CrossRefGoogle Scholar
  36. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteor Soc 79:61–78CrossRefGoogle Scholar
  37. van Bebber WJ (1881) Die geographische Vertheilung und Bewegung, das Entstehen und Verschwinden der barometrischen Minima in den Jahren 1876 bis 1880. Zeitschrift der österreichische Gesellschaft für Meteorologie 16:414–419Google Scholar
  38. van der Schrier G, Efthymiadis D, Briffa KR, Jones PD (2007) European Alpine moisture variability 1800–2003. Int J Climatol 27:415–427CrossRefGoogle Scholar
  39. Vrska T, Adam D, Hort L, Kolar T, Janik D (2009) European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) rotation in the Carpathians—a developmental cycle or a linear trend induced by man? Forest Ecol Management 258:347–356CrossRefGoogle Scholar
  40. Wales-Smith GB (1971) Monthly and annual totals of rainfall representative of Kew, Surrey, for 1697 to 1970. Meteorol Mag 100:345–362Google Scholar
  41. Webb RSC, Rosenzweig E, Levine ER (1993) Specifying land surface characteristics in general circulation models: soil profile data set and derived water-holding capacities. Glob Biogeochem Cycles 7:97–108CrossRefGoogle Scholar
  42. Wells N, Goddard S, Hayes M (2004) A self-calibrating Palmer drought severity index. J Climate 17:2335–2351CrossRefGoogle Scholar
  43. Wigley TML, Briffa KR, Jones PD (1984) On the average of value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Climatol Appl Meteorol 23:201–213CrossRefGoogle Scholar
  44. Wilson RJS, Luckman BH, Esper J (2005) A 500 year dendroclimatic reconstruction of spring–summer precipitation from the lower Bavarian Forest region, Germany. Int J Climatol 25:611–630CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ulf Büntgen
    • 1
    • 2
  • Rudolf Brázdil
    • 3
  • Petr Dobrovolný
    • 3
  • Mirek Trnka
    • 4
  • Tomáš Kyncl
    • 5
  1. 1.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  2. 2.Oeschger Centre for Climate Change ResearchBernSwitzerland
  3. 3.Institute of GeographyMasaryk UniversityBrnoCzech Republic
  4. 4.Institute of Agrosystems and BioclimatologyMendel UniversityBrnoCzech Republic
  5. 5.Moravian Dendro-LaborBrnoCzech Republic

Personalised recommendations