Theoretical and Applied Climatology

, Volume 105, Issue 1–2, pp 99–106 | Cite as

Human-biometeorological assessment of heat waves in Athens

Original Paper


The goal of this study is the analysis of heat waves and their impact on humans, using human biometeorological indices, which are based on the energy balance of the human body. The implications for humans are not only described through the intensity of the heat waves, but also through their duration over consecutive days. Both intensity and duration were analyzed for the Greater Athens Area during the period 1955 to 2001. The analysis was carried out using the daily physiologically equivalent temperature and the daily minimum air temperature. Based on these two parameters, the results showed an increase in the average duration of heat waves. Furthermore, the use of the Gaussian filter revealed the intra-annual variation of heat stress conditions and their relevance to humans. The results could be used for the management of the negative consequences of heat waves in cities suffering from environmental pollution and also for climate impact studies.


Heat Stress Heat Wave Urban Heat Island Physiologically Equivalent Temperature Heat Stress Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Thanks to the Hellenic National Meteorological Service for providing the data from the Hellinikon station.


  1. Baldi M, Dalu G, Maracchi G, Pasgui M, Cesanore F (2006) Heatwaves in the Mediterranean: a local feature or a larger-scale effect? Int J Climatol 26:1477–1487CrossRefGoogle Scholar
  2. Brikas DP, Karacostas TS, Pennas PJ, Flocas AA (2006) The role of the subtropical jeatstream during heatwave events over north-central Greece. Met Atmosp Phys 94:219–233CrossRefGoogle Scholar
  3. Chu PS, Yu ZP, Hastenrath S (1994) Detecting climate change concurrent with deforestation in the Amazon basin: which way has it gone? Bull Am Meteorol Soc 75:579–584CrossRefGoogle Scholar
  4. Conte M, Colacino M (1995) Heatwave in the central Mediterranean. Synoptic climatology. Il Nuovo Cimento 18C:295–304Google Scholar
  5. Driscoll DM (1985) Human health. In: Houghton DD (ed) Handbook of applied meteorology. Wiley, New York, pp 778–814Google Scholar
  6. Fanger PO (1972) Thermal comfort. McGraw-Hill, New YorkGoogle Scholar
  7. Fouillet A, Rey G, Laurent F, Pavillon G, Bellec S, Guihenneuc-Jouyaux C, Clavel J, Jougla E, Hémon D (2006) Excess mortality related to the August 2003 heatwave in France. Int Arch Occup Environm Health 80:16–24CrossRefGoogle Scholar
  8. Founda D, Giannakopoulos C (2009) The exceptionally hot summer of 2007 in Athens, Greece—a typical summer in the future climate? Glob Plan Change 67:227–236CrossRefGoogle Scholar
  9. Giles BD, Balafoutis C (1990) The Greek heatwaves of 1987 and 1988. Int J Climatol 10:505–517CrossRefGoogle Scholar
  10. Giles BD, Balafoutis C, Maheras P (1990) Too hot for comfort: the heat waves in Greece in 1987 and 1988. Int J Biometeorol 34:98–104CrossRefGoogle Scholar
  11. Höppe PR (1993) Heat balance modelling. Experientia 49:741–745CrossRefGoogle Scholar
  12. Höppe PR (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeor 43:71–75CrossRefGoogle Scholar
  13. IPCC (2007) The physical science basis. Contribution of Working Group 1 to the fourth IPCC assessment report, chapter 11 regional climate projections. IPPC, GenevaGoogle Scholar
  14. Kalkstein LS, Valimont KM (1986) An evaluation of summer discomfort in the United States using a relative climatological index. Bull Amer Meteor Soc 67:842–848CrossRefGoogle Scholar
  15. Katsouyanni K, Trichopoulos D, Zavitsanos X, Touloumi G (1988) The 1987 Athens heatwave. Lancet 2(8610):573CrossRefGoogle Scholar
  16. Khosla R, Guntupalli KK (1999) Heat related illness. Crit Care Clin 15:251–263CrossRefGoogle Scholar
  17. Koppe C (2005) Gesundheitsrelevante Bewertung von thermischer Belastung unter Berücksichtigung der kurzfristigen Anpassung der Bevölkerung an die lokalen Witterungsverhältnisse. Berichte des Deutschen Wetterdienstes Nr. 226Google Scholar
  18. Koppe C, Jendritzky G (2005) Inclusion of short-term adaption to thermal stresses in a heat load warning procedure. Meteorol Z 14:271–278CrossRefGoogle Scholar
  19. Koppe C, Kovats S, Jendritzky G, Menne B (2004) Heat-Waves: Risks and Responses. Health and Global Environmental Change Series No 2, WHO, Copenhagen, Denmark.Google Scholar
  20. Lee OD (1992) Urban warming? An analysis of recent trends in London’s heat island. Weather 47:50–56Google Scholar
  21. Matzarakis A, Mayer H (1991) The extreme heat wave in Athens in July 1987 from the point of view of human biometeorology. Atmos Env 25B:203–211Google Scholar
  22. Matzarakis A, Mayer H (1996) Another kind of environmental stress: thermal stress. WHO Newsletter 18:7–10Google Scholar
  23. Matzarakis A, Mayer H (1997) Heat stress in Greece. Int J Biometeorol 41:34–39CrossRefGoogle Scholar
  24. Matzarakis A, Endler C (2010) Adaptation of thermal bioclimate under climate change conditions—the example of physiologically equivalent temperature in Freiburg, Germany. Int J Biometeorol. doi: 10.1007/s00484-009-0296-2 Google Scholar
  25. Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84CrossRefGoogle Scholar
  26. Matzarakis A, Georgiadis T, Rossi F (2007a) Thermal bioclimate analysis for Europe and Italy. Il Nuovo Cimento C30:623–632Google Scholar
  27. Matzarakis A, Rutz F, Mayer H (2007b) Modelling radiation fluxes in easy and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334CrossRefGoogle Scholar
  28. Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments—basics of the RayMan model. Int J Biometeorol 54:131–139CrossRefGoogle Scholar
  29. Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49CrossRefGoogle Scholar
  30. Mitchell JM, Dzerdzeevskii B, Flohn H, Hofmeyr WL, Lamb HH, Rao KN, Walléen CC (1966) Climatic Change. WMO Technical Note No 79.Google Scholar
  31. Nasrallah HA, Brazel AJ, Balling RC (1990) Analysis of the Kuwait city urban heat island. Int J Climatol 10:401–405CrossRefGoogle Scholar
  32. Nastos P, Matzarakis Α (2008) Variability of tropical days over Greece within the second half of the twentieth century. Theor Appl Climatol 93:75–89CrossRefGoogle Scholar
  33. Philandras CM, Metaxas DA, Nastos PT (1999) Climate variability and urbanization in Athens. Theor Appl Climatol 63:65–72CrossRefGoogle Scholar
  34. Philandras CM, Nastos PT, Repapis CC (2008) Air temperature variability and trends over Greece. Global Nest J 10(2):273–285Google Scholar
  35. Prezerakos NG (1989) A contribution to the study of the extreme heat wave over the south Balkans in July 1987. Meteor Atmos Phys 41:261–271CrossRefGoogle Scholar
  36. Robinson PJ (2001) On the definition of heat waves. J Appl Meteorol 40:762–775CrossRefGoogle Scholar
  37. Schönwiese CD (1992) Praktische Statistik für Meteorologen und Geowissenschaftler. 2. Auflage, Berlin, Stuttgart, Gebrüder BorntraegerGoogle Scholar
  38. Sneyers R (1975) Sur l’ analyse statistique des series d’observations, Technical Note 143. WMO, GenevaGoogle Scholar
  39. Spagnolo J, de Dear R (2003) A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build Env 38:721–738CrossRefGoogle Scholar
  40. Thirion X, Debensason D, Delarozière JC, San Marco JL (2005) August 2003: reflections on a French summer disaster. Why were its medical consequences so serious? Are we sure to do better next time? J Conting Cris Manag 13:153–158CrossRefGoogle Scholar
  41. Tinz B, Jendritzky G (2003) Europa- und Weltkarten der gefühlten Temperatur, In: Chmielewski, F.-M., Foken, Th. (Ed.) Beiträge zur Klima- und Meeresforschung, Berlin und Bayreuth. 111–123Google Scholar
  42. VDI (1998) Methods for the human-biometeorological assessment of climate and air hygiene for urban and regional planning. Part I: climate. VDI guideline 3787. Beuth, BerlinGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Meteorological InstituteAlbert-Ludwigs-University of FreiburgFreiburgGermany
  2. 2.Laboratory of Climatology and Atmospheric Environment, Faculty of Geology and GeoenvironmentUniversity of AthensAthensGreece

Personalised recommendations