Advertisement

Theoretical and Applied Climatology

, Volume 105, Issue 1–2, pp 243–261 | Cite as

On the coupling between vegetation and the atmosphere

  • Isabella M. AngeliniEmail author
  • Michael GarstangEmail author
  • Robert E. Davis
  • Bruce Hayden
  • David R. Fitzjarrald
  • David R. Legates
  • Steven Greco
  • Stephen Macko
  • Vickie Connors
Original Paper

Abstract

Recent studies suggest that vegetation can drive large-scale atmospheric circulations and substantially influence the hydrologic cycle. We present observational evidence to quantify the extent of coupling between vegetation and the overlying atmosphere. Within the context of vegetation–atmospheric interactions, we reanalyze existing climatological data from springtime leaf emergence, emissivity, dew point temperatures, and historical records of precipitation and forest coverage. We construct new rainfall transects based on a robust global climatology. Using isotopic analysis of precipitation, we find that rain in Amazonia comes primarily from large-scale weather systems coupling interior regions to the ocean and is not directly driven by local evaporation. We find that changes in vegetative cover and state influence the temperature and moisture content of the surface and atmospheric boundary layer but are not reflected in observable precipitation changes. This analysis reaffirms the view that changes in precipitation over continental reaches are a product of complex processes only partly influenced but not controlled by local water sources or vegetation.

Keywords

Rain Rate Amazon Basin Squall Line Global Meteoric Water Line Geostationary Operational Environmental Satellite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

We wish to thank David Hondula (University of Virginia) for his assistance with the precipitation transect mapping and Jacqueline Kemper Shuman (University of Virginia) for providing the source maps of Russian vegetation and biomass. We also gratefully acknowledge David Lutz (University of Virginia) for asking the question that set us off onto this particular intellectual path. We thank Mary Morris who assembled the paper including compiling the figures and bibliography and are grateful to the Environment Energy Division of Simpson Weather Associates for their support in producing the manuscript.

References

  1. Alcântara C, Silva Dias M, Souza E, Cohen J (2010) Verification of the role of the low level jets in Amazon squall lines. Atmos Res, in pressGoogle Scholar
  2. Andréassian V (2004) Waters and forests: from historical controversy to scientific debate. J Hydrol 291:1–27CrossRefGoogle Scholar
  3. Angelini I (2002) Sources of rainwater in the Amazon. Ph.D. Dissertation, University of VirginiaGoogle Scholar
  4. Angelini I, Garstang M, Macko S, Swap R, Stewart D, Cunha H (2003) Isotopic variations and internal storm dynamics in the Amazon Basin. In: Tao W, Adler R (eds) Cloud systems, hurricanes, and the Tropical Rainfall Measuring Mission (TRMM). American Meteorological Society, Boston, pp 81–93Google Scholar
  5. Aravena R, Suzuki O, Pena H, Pollastri A, Fuenzalida H, Grilli A (1999) Isotopic composition and origin of the precipitation in northern Chile. Appl Geochem 14:411–422CrossRefGoogle Scholar
  6. Bariac T, Jusserand C, Mariotti A (1989) Evolution spatio-temporelle de la composition isotopique de l’eau dans le continuum sol-plante-atmosphere. Geochim Cosmochim Acta 54:413–424CrossRefGoogle Scholar
  7. Bariac T, Dellens E, Gerbaud A, Andre M, Mariotti A (1991) La composition isotopique (18O, 2H) de la vapeur d’eau transpiree: Etude en conditions asservies. Geochim Cosmochim Acta 55:3391–3402CrossRefGoogle Scholar
  8. Benton GS, Blackburn RT, Snead VW (1950) The role of the atmosphere in the hydrologic cycle. Trans Am Geophysical Union 31:61–73Google Scholar
  9. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449CrossRefGoogle Scholar
  10. Brandão de Cunha Senna H (1992) Balanço de macro elementos e composição isotopica de uma bacia hidrográfica na Amazônia Central. Ph.D. Dissertation, Universidade de São Paulo, BrazilGoogle Scholar
  11. Brubaker K, Entekhabi D, Eagleson PS (1993) Estimation of continental precipitation recycling. J Clim 6:1077–1089CrossRefGoogle Scholar
  12. Caird MA, Richards JH, Donovan LA (2007) Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiol 143:4–10CrossRefGoogle Scholar
  13. Cohen JC, Nobre CA, Silva Dias MAF (1989) Mean distribution and characteristics of the squall lines observed over the Amazon basin. In: Proc. AMS Third Internat. Conf. on Southern Hemisphere Meteorology and Oceanography, Buenos Aires, Argentina, November, pp 205-207Google Scholar
  14. Conners V (1991) Equatorial atmospheric weather regimes: their structure and role. Ph.D. Dissertation, University of VirginiaGoogle Scholar
  15. D’Almeida C, Vörösmarty CJ, Hurtt GC, Marengo JA, Dingman SL, Keim BD (2007) The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. Int J Climatol 27:633–647CrossRefGoogle Scholar
  16. Dall’Olio A, Salati ES, Azevedo CT, Matsui E (1979) Modelo de x fracionamento isotópico da água na Bacia Amazônica (primeria aproximação). Acta Amazonica 9:675–687Google Scholar
  17. Dansgaard W (1964) Stable isotopes in precipitation. Tellus XVI 4:436–468CrossRefGoogle Scholar
  18. Eltahir E, Bras R (1994) Precipitation recycling in the Amazon basin. Quart J Roy Met Soc 120:861–880CrossRefGoogle Scholar
  19. Faure G (1996) Principles of isotope geology, 2nd edn. Wiley, New YorkGoogle Scholar
  20. Fitzjarrald DR, Acevedo OC, Moore KE (2001) Climatic consequences of leaf presence in the eastern United States. J Clim 14:598–614CrossRefGoogle Scholar
  21. Fitzjarrald DR, Sakai RK, Moraes OLL, de Oliveira RC, Acevedo OC, Czikowsky MJ, Beldini T (2008) Spatial and temporal rainfall variability near the Amazon Tapajós confluence. J Geophys Res 113:G00B11CrossRefGoogle Scholar
  22. Flanagan L, Comstock J, Ehleringer J (1991) Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phseolus vulgaris L. Plant Physiol 96:588–596CrossRefGoogle Scholar
  23. Foster DR (1992) Land-use history (1730-1990) and vegetation dynamics in central New England, USA. J Ecol 80:753–771CrossRefGoogle Scholar
  24. Foster DR, Motzkin G, Slater B (1998) Land-use history as long-term broad-scale disturbance: regional forest dynamics in central New England. Ecosystems 1:96–119CrossRefGoogle Scholar
  25. Freedman JM, Fitzjarrald DR, Moore KE, Sakai RK (2001) Boundary layer clouds and vegetation-atmosphere feedbacks. J Clim 14:180–197CrossRefGoogle Scholar
  26. Garstang M, Fitzjarrald DR (1999) Observations of surface to atmosphere interactions in the tropics. Oxford University Press, New YorkGoogle Scholar
  27. Garstang M, Massie HL, Halverson J, Greco S, Scala J (1994) Amazon coastal squall lines. Part I: structure and kinematics. Mon Weather Rev 122:608–622CrossRefGoogle Scholar
  28. Garstang M, Larom D, Raspet R, Lindeque M (1995) Atmospheric controls on elephant communications. J Exp Biol 198:939–951Google Scholar
  29. Garstang M, Fitzjarrald D, Fristrup K, Brain C (2005) The daily cycle of low-frequency elephant calls and near-surface atmospheric conditions. Earth Interact 14:1–21CrossRefGoogle Scholar
  30. Gat J (2000) Atmospheric water balance- the isotopic perspective. Hydrol Proc 14:1357–1369CrossRefGoogle Scholar
  31. Gedzelman SD, Arnold R (1994) Modeling the isotopic composition of precipitation. J Geophys Res 99:10455–10471CrossRefGoogle Scholar
  32. Gimeno L, Drumond A, Nieto R, Trigo RM, Stohl A (2010) On the origin of continental precipitation. Geophys Res Lett 37:L13804. doi: 10.1029/2010GL043712 CrossRefGoogle Scholar
  33. Greco S, Swap R, Garstang M, Ulanski S, Shipman M, Harriss RC, Talbot R, Andreae MO, Artaxo P (1990) Rainfall and surface kinematic conditions over Central Amazonia during ABLE 2B. J Geophys Res 95:17001–17014CrossRefGoogle Scholar
  34. Greco S, Scala J, Halverson J, Massie HL Jr, Tao W-K, Garstang M (1994) Amazon coastal squall lines: Part II: heat and moisture transports. Mon Weather Rev 122:623–635CrossRefGoogle Scholar
  35. Gu L, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res 107:4050CrossRefGoogle Scholar
  36. Hayden BP (1998) Ecosystem feedbacks on climate at the landscape scale. Phil Trans R Soc Lond 353:5–18CrossRefGoogle Scholar
  37. Henderson-Sellers A, Gornitz V (1984) Possible climatic impacts of land cover transformations, with particular emphasis on tropical deforestation. Climate Change 6:231–258CrossRefGoogle Scholar
  38. Hoefs J (1997) Stable isotope geochemistry. Springer, BerlinGoogle Scholar
  39. Hulme M (1994) Validation of large-scale precipitation fields in general circulation models. In: Desbois M, Desalmand F (eds) Global precipitation and climate change, NATO ASI series. Springer, Berlin, pp 387–406Google Scholar
  40. Keim BD, Fischer MR, Wilson AM (2005) Are there spurious precipitation trends in the United States climate division database? Geophys Res Lett 32:L04702CrossRefGoogle Scholar
  41. Kousky VE (1979) Frontal influence on Northeast Brazil. Mon Weather Rev 107:1140–1153CrossRefGoogle Scholar
  42. Kousky VE (1981) Diurnal rainfall variation in northeast Brazil. Mon Weather Rev 108:488–498CrossRefGoogle Scholar
  43. Legates DR (1987) A climatology of global precipitation. Publ Climatol 40:85Google Scholar
  44. Legates DR (1995) Global and terrestrial precipitation: a comparative assessment of existing climatologies. Int J Climatol 15:237–258CrossRefGoogle Scholar
  45. Legates DR (1997) Comments on “global and terrestrial precipitation: a comparative assessment of existing climatologies”—a reply. Int J Climatol 17:779–783CrossRefGoogle Scholar
  46. Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gage-corrected, global precipitation. Int J Climatol 10:111–127CrossRefGoogle Scholar
  47. Leopoldo PR, Franken WK, Villa Nova NA (1995) Real evapotranspiration and transpiration through a tropical rain forest in Central Amazonia as estimated by the water balance method. For Ecol Manage 73:185–195CrossRefGoogle Scholar
  48. Liebmann B, Allured D (2005) Daily precipitation grids for South America. Bull Am Meteorol Soc 86:1567–1570CrossRefGoogle Scholar
  49. Mahmood R, Pielke RA Sr, Hubbard KG, Niyogi D, Bonan G, Lawrence P, McNider R, McAlpine C, Etter A, Gameda S, Qian B, Carleton A, Beltran-Przekurat A, Chase T, Quintanar AI, Adegoke JO, Vezhapparambu S, Conner G, Asefi S, Sertel E, Legates DR, Wu Y, Hale R, Frauenfeld OW, Watts A, Shepherd M, Mitra C, Anantharaj VG, Fall S, Lund R, Treviño A, Blanken P, Du J, Chang H-I, Leeper R, Nair US, Dobler S, Deo R, Syktus J (2010) Impacts of land use land cover change on climate and future research priorities. Bull Am Meteorol Soc 91:37–46CrossRefGoogle Scholar
  50. Makarieva AM, Gorshkov VG (2007) Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol Earth Syst Sci 11:1013–1033CrossRefGoogle Scholar
  51. Makarieva AM, Gorshkov VG, Bai-Lian L (2009) Precipitation on land versus distance from the ocean: evidence for a forest pump of atmospheric moisture. Ecological Complexity 6:302–307CrossRefGoogle Scholar
  52. Marengo JA (2006) On the hydrological cycle of the Amazon Basin: a historical review and current state-of-the-art. Rev Bras Meteorol 21:1–19Google Scholar
  53. Marques J, Santos JM, Nova NAV, Salati E (1977) Precipitable water and water vapor flux between Belém and Manaus. Acta Amazon 7:355–362Google Scholar
  54. Matsui E, Salati E, Ribeiro MNG, Reis CM, Tancredi AC, Gat JR (1983) Precipitation in the Central Amazon Basin: the isotopic composition of rain and atmospheric moisture at Belém and Manaus (*). Acta Amazon 13:307–369Google Scholar
  55. Meesters AGCA, Dolman AJ, Bruijnzeel LA (2009) Comment on “Biotic pump of atmospheric moisture as driver of the hydrological cycle on land” by A.M. Makarieva and V.G. Gorshkov, Hydrol. Earth Syst. Sci., 11, 1013-1033, 2007. Hydrol Earth Syst Sci 13:1299–1305CrossRefGoogle Scholar
  56. Molion LC (1979) A climatonomic study of the energy and moisture fluxes of the Amazon Basin with considerations of deforestation effects. Ph.D. Dissertation, University of WisconsinGoogle Scholar
  57. Molion LC (1987) Micrometeorology of an Amazonian rain forest. In: Dickerson R (ed) The geophysiology of amazonia: vegetation and climate interaction. Wiley, New York, pp 255–272Google Scholar
  58. National Research Council (NRC) (2005) Radiative forcing of climate change: expanding the concept and addressing uncertainties. National Academic Press, Washington, D.C., p 208Google Scholar
  59. Oki T (2005) The hydrologic cycles and global circulation. In: Anderson MG, McDonnel J (eds) Encyclopedia of hydrological sciences. Wiley, New York, pp 13–22Google Scholar
  60. Pielke RA Sr (2001) Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev Geophys 39:151–177CrossRefGoogle Scholar
  61. Pielke RA Sr, Adegoke J, Beltrán-Przekurat A, Hiemstra CA, Lin J, Nair US, Niyogi D, Nobis TE (2007) An overview of regional land-use and land-cover impacts on rainfall. Tellus 59B:587–601Google Scholar
  62. Rasmusson EM (1967) Atmospheric water vapor transport and the water balance of North America. 1. Characteristics of the water vapor flux field. Mon Weather Rev 95:403–426CrossRefGoogle Scholar
  63. Rasmusson EM (1968) Atmospheric water vapor transport and water balance of North America. Mon Weather Rev 96:720–734CrossRefGoogle Scholar
  64. Rasmusson EM (1971) A study of the hydrology of eastern North America using atmospheric vapor flux data. Mon Weather Rev 99:120–135CrossRefGoogle Scholar
  65. Robinson GD (1968) Some determinations of atmospheric absorption by measurement of solar radiation from aircraft and at the surface. Quart J Roy Meteor Soc 92:263–269CrossRefGoogle Scholar
  66. Rogers RR, Yau MK (1989) A short course in cloud physics. Pergamon, New YorkGoogle Scholar
  67. Salati E (1984) The climatology and hydrology of amazonia. In: Prance GT, Lovejoy TE (eds) Amazonia. Pergamon, London, pp 18–48Google Scholar
  68. Salati E (1987) The forest and the hydrological cycle. In: Dickinson RE (ed) The geophysiology of amazonia vegetation and climate interaction. Wiley, New York, pp 273–293Google Scholar
  69. Salati E, Marques J (1984) Climatology of the Amazon Region. In: Sioli H (ed) The Amazon: limnology and landscape ecology. Junk, Boston, pp 85–126Google Scholar
  70. Salati E, Dall’Olio A, Matsui E, Gat JR (1979) Recycling of water in the Amazon Basin: an isotopic study. Water Resour Res 15:1250–1258CrossRefGoogle Scholar
  71. Satyamurty P, Anderson de Castro A, Tota J, da Silva E, Gularte L, Manzi AO (2010) Rainfall trends in the Brazilian Amazon Basin in the past eight decades. Theor Appl Climatol 99:139–148CrossRefGoogle Scholar
  72. Sellers WD, Dryden PS (1967) An investigation of heat transfer from bare soil. Final report: Grant DA-AMC-28-043-66-627, Institute of Atmospheric Physics, University of Arizona, Tucson, AZGoogle Scholar
  73. Sheil D, Murdiyarso D (2009) How forests attract rain: an examination of a new hypothesis. Bioscience 59:341–347CrossRefGoogle Scholar
  74. Silva Dias MAF, Ferreira RN (1992) Application of a linear spectral model to the study of Amazonian squall lines during GTE/ABLE 2B. J Geophys Res 97:20405–20419Google Scholar
  75. Sodemann H, Schwierz C, Wernli H (2008a) Interannual variability of Greenland winter precipitation sources: lagrangian moisture diagnostic and North Atlantic oscillation influence. J Geophys Res 113:D03107. doi: 10.1029/2007JD008503 CrossRefGoogle Scholar
  76. Sodemann H, Masson-Delmotte V, Schwierz C, Vinther BM, Wernli H (2008b) Interannual variability of Greenland winter precipitation sources: 2. Effects of North Atlantic oscillation variability on stable isotopes in precipitation. J Geophys Res 113:D12111. doi: 10.1029/2007JD009416 CrossRefGoogle Scholar
  77. Stewart MK (1975) Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: applications to atmospheric processes and evaporation of lakes. J Geophys Res 80:1133–1146CrossRefGoogle Scholar
  78. Stohl A, James P (2004) A lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J Hydrometeorol 5:656–678. doi: 10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2 CrossRefGoogle Scholar
  79. Stohl A, James P (2005) A lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between the Earth’s ocean basins and river catchments. J Hydrometeorol 6:961–984. doi: 10.1175/JHM470.1 CrossRefGoogle Scholar
  80. Sun W-Y, Orlanski I (1981) Large mesoscale convection and sea breeze circulation: part 1: linear stability analysis. J Atmos Sci 38:1675–1693CrossRefGoogle Scholar
  81. Swap R, Garstang M, Greco S, Talbot R, Kållberg P (1992) Saharan dust in the Amazon Basin. Tellus 44B:133–149Google Scholar
  82. Victoria RL, Martinelli LA, Mortatti J, Richey J (1991) Mechanisms of water recycling in the Amazon Basin: isotopic insights. Ambio 20:384–387Google Scholar
  83. Villa Nova NA, Salati E, Matsui E (1976) Estimativa da evapotranspiração na Bacia Amazônica. Acta Amazon 6:215–228Google Scholar
  84. Yakir D (1992) Water compartmentalization in plant tissue: isotopic evidence. In: Somero S, Osmond C, Bolis C (eds) Water and Life. Springer, Berlin, pp 205–222Google Scholar
  85. Zeng N (1999) Seasonal cycle and interannual variability in the Amazon hydrologic cycle. J Geophys Res 104:9097–9106CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Isabella M. Angelini
    • 1
    Email author
  • Michael Garstang
    • 1
    Email author
  • Robert E. Davis
    • 1
  • Bruce Hayden
    • 1
  • David R. Fitzjarrald
    • 2
  • David R. Legates
    • 3
  • Steven Greco
    • 4
  • Stephen Macko
    • 1
  • Vickie Connors
    • 5
  1. 1.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  2. 2.Atmospheric Sciences Research CenterUniversity at AlbanyAlbanyUSA
  3. 3.Office of the State ClimatologistUniversity of DelawareNewarkUSA
  4. 4.Simpson Weather Associates, IncCharlottesvilleUSA
  5. 5.Virginia Commonwealth UniversityRichmondUSA

Personalised recommendations