Advertisement

Theoretical and Applied Climatology

, Volume 104, Issue 1–2, pp 1–12 | Cite as

Weakening sensible heat source over the Tibetan Plateau revisited: effects of the land–atmosphere thermal coupling

  • Xiaofeng GuoEmail author
  • Kun Yang
  • Yingying Chen
Original Paper

Abstract

The bulk heat transfer coefficient (C H ) indicates the land–atmosphere thermal coupling strength. We seek to detect its variability and changes on the Tibetan Plateau (TP) during 1981–2006, particularly concerned with its effects on the sensible heat source. C H is parameterized by Monin–Obukhov similarity theory combining routine meteorological measurements. The South Asian monsoon period is characterized by weak sensible heat flux (H), but strong thermal coupling (C H ). Winter sees the greatest diurnal C H range, roughly 0.001–0.008. On average, C H exhibits a notable nighttime increase (10% decade−1) and a weak daytime decrease (−5% decade−1). The strengthening thermal coupling at selected sites alleviates the weakening of H, because it enhances nighttime H increase and reduces daytime H decrease. Moreover, we confirm the finding in earlier studies that sensible heating is weakening on the TP, but find its trend less notable than empirically estimated using C H  = 0.004.

Keywords

Tibetan Plateau Climate Sensitivity Physical Approach Thermal Coupling China Meteorological Administration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Critical comments by two anonymous referees greatly benefited our presentation and revisions in general. The authors are indebted to the China Meteorological Administration for providing the long-term dataset (http://cdc.cma.gov.cn/ ). Our colleague Lin Zhang offered a Java-based applet that facilitated our preparation of the multi-panel figures; Jie He helpfully prepared a DEM topography dataset. This study is jointly funded by the Chinese Academy of Sciences (CAS Innovation Project KZCX2-YW-145), China Postdoctoral Science Foundation (Grant 20090450056), and National Natural Science Foundation of China (Grant 40810059006). Xiaofeng Guo gratefully acknowledges the support of K. C. Wong Education Foundation, Hong Kong.

References

  1. Caparrini F, Castelli F, Entekhabi D (2004) Variational estimation of soil and vegetation turbulent transfer and heat flux parameters from sequences of multisensor imagery. Water Resour Res 40:W12515. doi: 10.1029/2004WR003358 CrossRefGoogle Scholar
  2. Chen F, Zhang Y (2009) On the coupling strength between the land surface and the atmosphere: from viewpoint of surface exchange coefficients. Geophys Res Lett 36:L10404. doi: 10.1029/2009GL037980 CrossRefGoogle Scholar
  3. Chen S, Liu Y, Thomas A (2006) Climatic change on the Tibetan Plateau: potential evapotranspiration trends from 1961–2000. Clim Change 76:291–319CrossRefGoogle Scholar
  4. Chen Y, Yang K, Zhou D, Qin J, Guo X (2010) Improving Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. J Hydrometeorol. doi: 10.1175/2010JHM1185.1 Google Scholar
  5. Cheng YG, Brutsaert W (2005) Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Bound-Lay Meteorol 114:519–538CrossRefGoogle Scholar
  6. Demuzere M, De Ridder K, Van Lipzig NPM (2008) Modeling the energy balance in Marseille: sensitivity to roughness length parameterizations and thermal admittance. J Geophys Res 113:D16120. doi: 10.1029/2007JD009113 CrossRefGoogle Scholar
  7. Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Change 59:1–4CrossRefGoogle Scholar
  8. Duan A, Wu G (2006) Change of cloud amount and the climate warming on the Tibetan Plateau. Geophys Res Lett 33:L22704. doi: 10.1029/2006GL027946 CrossRefGoogle Scholar
  9. Duan A, Wu G (2008) Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: observations. J Clim 21:3149–3164CrossRefGoogle Scholar
  10. Duan A, Wu G (2009) Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part II: connection with climate warming. J Clim 22:4197–4212CrossRefGoogle Scholar
  11. Dyer AJ (1974) A review of the flux-profile relationships. Bound-Lay Meteorol 7:363–372CrossRefGoogle Scholar
  12. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, p 316Google Scholar
  13. Guo X, Zhang H (2007) A performance comparison between nonlinear similarity functions in bulk parameterization for very stable conditions. Environ Fluid Mech 7:239–257CrossRefGoogle Scholar
  14. Jiang Y, Luo Y, Zhao Z, Tao S (2010) Changes in wind speed over China during 1956–2004. Theor Appl Climatol 99:421–430CrossRefGoogle Scholar
  15. Ma Y, Menenti M, Feddes R, Wang J (2008) Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths. J Geophys Res 113:D08113. doi: 10.1029/2007JD009124 CrossRefGoogle Scholar
  16. Mahrt L (1996) The bulk aerodynamic formulation over heterogeneous surfaces. Bound-Lay Meteorol 78:87–119CrossRefGoogle Scholar
  17. Mahrt L, Vickers D (2004) Bulk formulation of the surface heat flux. Bound-Lay Meteorol 110:357–379CrossRefGoogle Scholar
  18. McVicar TR, Van Niel TG, Roderick ML, Li LT, Mo XG, Zimmermann NE, Schmatz DR (2010) Observational evidence from two mountainous regions that near-surface wind speeds are declining more rapidly at higher elevations than lower elevations: 1960–2006. Geophys Res Lett 37:L06402. doi: 10.1029/2009GL042255 CrossRefGoogle Scholar
  19. Meehl GA, Arblaster JM, Collins WD (2008) Effects of black carbon aerosols on the Indian monsoon. J Clim 21:2869–2882CrossRefGoogle Scholar
  20. Pepin NC, Lundquist JD (2008) Temperature trends at high elevations: patterns across the globe. Geophys Res Lett 35:L14701. doi: 10.1029/2008GL034026 CrossRefGoogle Scholar
  21. Qin J, Yang K, Liang S, Guo X (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim Change 97:321–327CrossRefGoogle Scholar
  22. Rangwala I, Miller JR, Xu M (2009) Warming in the Tibetan Plateau: possible influences of the changes in surface water vapor. Geophys Res Lett 36:L06703. doi: 10.1029/2009GL037245 CrossRefGoogle Scholar
  23. Seol KH, Hong SY (2009) Relationship between the Tibetan snow in spring and the east Asian summer monsoon in 2003: a global and regional modeling study. J Clim 22:2095–2110CrossRefGoogle Scholar
  24. Sheffield J, Wood EF (2008) Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J Clim 21:432–458CrossRefGoogle Scholar
  25. van den Hurk BJJM, Holtslag AAM (1997) On the bulk parameterization of surface fluxes for various conditions and parameter ranges. Bound-Lay Meteorol 82:119–134CrossRefGoogle Scholar
  26. Wang B, Bao Q, Hoskins B, Wu G, Liu Y (2008a) Tibetan Plateau warming and precipitation changes in East Asia. Geophys Res Lett 35:L14702. doi: 10.1029/2008GL034330 CrossRefGoogle Scholar
  27. Wang H, Li DL, Hu ZY, Wang JM (2008b) A review of the study of the bulk transfer coefficients over the land. Adv Earth Sci 23:1249–1259 (in Chinese)Google Scholar
  28. Xu Z, Zhang YC (2008) Effects of the Tibetan Plateau on the climate of China. In: Fu C, Jiang Z, Guan Z, He J, Xu Z (eds) Regional climate studies of China. Springer, Verlag, pp 219–270Google Scholar
  29. Xu M, Chang C-P, Fu C, Qi Y, Robock A, Robinson D, Zhang H (2006) Steady decline of East Asian monsoon winds, 1969–2000: evidence from direct ground measurements of wind speed. J Geophys Res 111:D24111. doi: 10.1029/2006JD007337 CrossRefGoogle Scholar
  30. Xu Z, Fu C, Qian Y (2009) Relative roles of land–sea distribution and orography in Asian monsoon intensity. J Atmos Sci 66:2714–2729CrossRefGoogle Scholar
  31. Yanai M, Li C (1994) Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon Weather Rev 122:305–323CrossRefGoogle Scholar
  32. Yanai M, Wu GX (2006) Effects of the Tibetan Plateau. In: Wang B (ed) The Asian monsoon. Springer, Verlag, pp 513–549CrossRefGoogle Scholar
  33. Yanai M, Li C, Song Z (1992) Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J Meteorol Soc Jpn 70:319–351Google Scholar
  34. Yang K, Koike T, Fujii H, Tamagawa K, Hirose N (2002) Improvement of surface flux parameterizations with a turbulence-related length. Q J R Meteorol Soc 128:2073–2087CrossRefGoogle Scholar
  35. Yang K, Watanabe T, Koike T et al (2007) Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget. J Meteorol Soc Jpn 85:229–242CrossRefGoogle Scholar
  36. Yang K, Koike T, Ishikawa H et al (2008) Turbulent flux transfer over bare-soil surfaces: characteristics and parameterization. J Appl Meteorol Climatol 47:276–290CrossRefGoogle Scholar
  37. Yang K, Qin J, Guo X, Zhou D, Ma Y (2009) Method development for estimating sensible heat flux over the Tibetan Plateau from CMA data. J Appl Meteorol Climatol 48:2474–2486CrossRefGoogle Scholar
  38. Yang K, Guo X, He J, Qin J, Koike T (2010a) On the climatology and trend of the atmospheric heat sources over the Tibetan Plateau: an experiments-supported revisit. J Clim (in review)Google Scholar
  39. Yang K, Guo XF, Wu BY (2010b) Recent trends in surface sensible heat flux on the Tibetan Plateau. Sci China D: Earth Sci 40:923–932Google Scholar
  40. Ye D-Z, Wu G-X (1998) The role of the heat source of the Tibetan Plateau in the general circulation. Meteorol Atmos Phys 67:181–198CrossRefGoogle Scholar
  41. You Q, Kang S, Pepin N, Yan Y (2008) Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau, 1961–2005. Geophys Res Lett 35:D04704. doi: 10.1029/2007GL032669 CrossRefGoogle Scholar
  42. Zhang JJ, Zhu BZ, Zhu FK et al (1988) Advances in the Qinghai–Xizang Plateau meteorology. Chin Sci, Beijing, p 268Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Key Laboratory of Tibetan Environment Changes and Land Surface ProcessesInstitute of Tibetan Plateau Research, Chinese Academy of SciencesBeijingChina

Personalised recommendations