Theoretical and Applied Climatology

, Volume 103, Issue 3–4, pp 387–399 | Cite as

Temperature variability in China in an ensemble simulation for the last 1,200 years

  • Dan Zhang
  • Richard Blender
  • Xiuhua Zhu
  • Klaus FraedrichEmail author
Original Paper


Regional temperature anomalies in China during 800–2005 ad in an ensemble simulation with the atmosphere–ocean general circulation model ECHAM5/MPIOM subject to anthropogenic and natural forcings are compared to reconstructions. In a mutual assessment of three reconstructed data sets and two ensemble simulations with different solar forcings, a reconstructed data set and a simulated ensemble for weak solar variability are selected for further comparison. Temperature variability in the selected simulated and reconstructed data shows a continuous power spectrum with weak long-term memory. The simulation reveals weak long-term anomaly periods known as the Medieval Warm Period (MWP), the Little Ice Age (LIA), and the Modern Warming (MW) in the three considered regions: Northeast, Southeast, and West China. The ensemble spread yields an uncertainty of ±0.5°C in all regions. The simulated temperature varies nearly synchronously in all three regions, whereas reconstructed data hint to increased decadal variability in the West and centennial variability in the Northeast. Cold periods are found in 1200–1300 and in 1600–1900 ad in all regions. The coldest anomalies which are caused by volcanic eruptions in the beginnings of the thirteenth and the nineteenth centuries are only partly consistent with reconstructed data. After 1800, the annual cycle reduces in the Northeast and on the Tibetan plateau, whereas the eastern Pacific shows an enhanced summer–winter contrast.


Temperature Anomaly Aerosol Optical Depth Total Solar Irradiance Temperature Reconstruction Maunder Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We like to thank Johann Jungclaus, Martin Claußen, and the Millennium Consortium at the Max-Planck Institute and at the University of Hamburg for providing the simulated data and for stimulating discussions. We are grateful to Wang Shao-Wu (Peking University, Beijing) for the reconstructed temperature time series. DZ acknowledges the support for the visit at Hamburg by the Institute of Geographic Sciences and Natural Resources Research (Chinese Academy of Sciences) and the Graduate School of the Chinese Academy of Sciences. The suggestions of the two anonymous reviewers helped improve the paper considerably.


  1. Ammann CM, Joos F, Schimel DS, Otto-Bliesner BL, Tomas RA (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR climate system model. PNAS 104:3713–3718CrossRefGoogle Scholar
  2. Bard E, Raisbeck G, Yiou F, Jouzel J (2000) Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus 52B:985–992Google Scholar
  3. Bauer E, Claussen M, Brovkin V (2003) Assessing climate forcings of the Earth system for the past millennium. Geophys Res Lett 30:1276. doi: 10.1029/2002GL016639 CrossRefGoogle Scholar
  4. Blender R, Fraedrich K (2006) Long term memory of the hydrological cycle and river runoffs in China in a high resolution climate model. Int J Climatol 26:1547–1565CrossRefGoogle Scholar
  5. Cole-Dai J, Ferris D, Lanciki A, Savarino J, Baroni M, Thiemens MH (2009) Cold decade (ad 1810–1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption. Geophys Res Lett 36:L22703CrossRefGoogle Scholar
  6. Crowley TJ, Baum SK, Kim KY, Hegerl GC, Hyde WT (2003) Modeling ocean heat content changes during the last millennium. Geophys Res Lett 30:1932. doi: 10.1029/2003GL017801 CrossRefGoogle Scholar
  7. Crowley TJ, Zielinski G, Vinther B, Udisti R, Kreutz K, Cole-Dai J, Castellano E (2008) Volcanism and the Little Ice Age. PAGES News 16:22–23Google Scholar
  8. Foley JA, Delire C, Ramankutty N, Snyder P (2003) Green surprise? How terrestrial ecosystems could affect Earth’s climate. Front Ecol Environ 1:38–44Google Scholar
  9. Fraedrich K, Blender R (2003) Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys Rev Lett 90:108501CrossRefGoogle Scholar
  10. Ge QS, Zheng JY, Fang XQ, Man ZM, Zhang XQ, Zhang PY, Wang WC (2003) Winter half-year temperature reconstruction for the middle and lower reaches of the Yellow River and Yangtze River, China, during the past 2000 years. The Holocene 13:933–940. Data from: East-Central China Winter Half-year Temperature Reconstruction, IGBP PAGES/World Data Center for Paleoclimatology. Data Contribution Series #2003-090. NOAA/NGDC Paleoclimatology Program, Boulder CO, USAGoogle Scholar
  11. Ge QS, Wang SB, Zheng JY (2006) Reconstruction of temperature series in China for the last 5000 years. Prog Nat Sci 16:838–845 (in Chinese)CrossRefGoogle Scholar
  12. Ge QS, Zheng JY, Hao ZX, Shao XM, Wang W-C, Luterbacher J (2010) Temperature variation through 2000 years in China: an uncertainty analysis of reconstruction and regional difference. Geophys Res Lett 37:L03703CrossRefGoogle Scholar
  13. Goosse H, Renssen H, Timmermann A, Bradley RS (2005) Internal and forced climate variability during the last millennium: a model-data comparison using ensemble simulations. Quatern Sci Rev 24:1345–1360CrossRefGoogle Scholar
  14. Holmes JA, Cook ER, Yang B (2009) Climate change over the past 2000 years in Western China. Quatern Int 194:91–107CrossRefGoogle Scholar
  15. Huybers P, Curry W (2006) Links between annual, Milankovitch and continuum temperature variability. Nature 441:329–332CrossRefGoogle Scholar
  16. Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42(RG2002):1–42. doi: 10.1029/2003RG000143 Google Scholar
  17. Jungclaus JH (2009) Lessons from the past millennium. Nat Geosci 2:468–470CrossRefGoogle Scholar
  18. Jungclaus J, the COMSIMM Team (2009) Ensemble simulations of the last millennium using an earth system model including an interactive carbon cycle. Geophysical Research Abstracts 11, EGU General Assembly 2009-4043Google Scholar
  19. Jungclaus JH, Lorenz SJ, Timmreck C, Reick CH, Brovkin V, Six K, Segschneider J, Giorgetta MA, Crowley TJ, Pongratz J, Krivova NA, Vieira LE, Solanki SK, Klocke D, Botzet M, Esch M, Gayler V, Haak H, Raddatz TJ, Roeckner E, Schnur R, Widmann H, Claussen M, Stevens B, Marotzke J (2010) Climate and carbon-cycle variability over the last millennium. Clim Past Discuss 6:1009–1044Google Scholar
  20. Krivova NA, Balmaceda L, Solanki SK (2007) Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron Astrophys 467:335–346CrossRefGoogle Scholar
  21. Liu J, von Storch H, Chen X, Zorita E, Zheng J, Wang S (2005) Simulated and reconstructed winter temperature in the eastern China during the last millennium. Chin Sci Bull 50:2872–2877Google Scholar
  22. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. PNAS 105:13252–13257CrossRefGoogle Scholar
  23. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260CrossRefGoogle Scholar
  24. Marsland S, Haak H, Jungclaus J, Latif M, Röske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127CrossRefGoogle Scholar
  25. Peng YB, Xu Y, Jin L (2009) Climate changes over eastern China during the last millennium in simulations and reconstructions. Quatern Int 208:11–18. doi: 10.1016/j.quaint.2009.02.013 CrossRefGoogle Scholar
  26. Pongratz J, Reick C, Raddatz T, Claussen M (2008) A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochem Cycles 22:GB3018. doi: 10.1029/2007GB003153 CrossRefGoogle Scholar
  27. Qian W, Ding T, Fu J, Lin X, Zhu Y (2008) Review on the data application and climate variability in China for various timescales. Adv Climate Change Res Suppl 4:1–6Google Scholar
  28. Raddatz TJ, Reick CJ, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler KG, Wetzel P, Jungclaus JH (2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the 21st century? Climate Dyn 29:565–574CrossRefGoogle Scholar
  29. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Max Planck Institute for Meteorology, Report 349, p 127Google Scholar
  30. Stenchikov G, Delworth TL, Ramaswamy V, Stouffer RJ, Wittenberg A, Fanrong F (2009) Volcanic signals in oceans. J Geophys Res 114:D16104. doi: 10.1029/2008JD011673 CrossRefGoogle Scholar
  31. Stothers RB (1984) The great Tambora eruption and its aftermath. Science 224:1191–1198CrossRefGoogle Scholar
  32. Timmreck C, Lorenz SJ, Crowley TJ, Kinne S, Raddatz TJ, Thomas MA, Jungclaus JH (2009) Limited temperature response to the very large ad 1258 volcanic eruption. Geophys Res Lett 36:L21708. doi: 10.1029/2009GL040083 CrossRefGoogle Scholar
  33. Tsiropoula G (2003) Signatures of solar activity variability in meteorological parameters. J Atmos Sol Terr Phys 65:469–482CrossRefGoogle Scholar
  34. Wang R, Wang S, Fraedrich K (1991) An approach to reconstruction of temperature on seasonal basis using historical documents from China. Int J Climatol 11:381–392CrossRefGoogle Scholar
  35. Wang SW, Wen XY, Luo Y, Dong WJ, Zhao ZC, Yang B (2007) Reconstruction of temperature series of China for the last 1000 years. Chin Sci Bull 52:3272–3280CrossRefGoogle Scholar
  36. Wetzel P, Maier-Reimer E, Keenlyside N, Botzet M, Latif M, Jungclaus JH (2006) Effects of ocean biology on the penetrative radiation in a coupled climate model. J Climate 19:3973–3987CrossRefGoogle Scholar
  37. Yang B, Shi Y, Li HP (2001) Climatic variations in China over the last 2000 years. Chin Geogr Sci 11:97–103CrossRefGoogle Scholar
  38. Yang B, Bräuning A, Johnson KR, Shi YF (2002) General characteristics of temperature variation in China during the last two millennia. Geophys Res Lett 29:1324–1327. doi: 10.1029/2001GL014485. Data from Yang et al. (2002) Temperature variation in China during the last two millennia. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series #2002-061. NOAA/NGDC Paleoclimatology Program, Boulder CO, USAGoogle Scholar
  39. Yang B, Bräuning A, Shi Y, Zhang J (2003) Temperature variations on the Tibetan Plateau over the last two millennia. Chin Sci Bull 48:1446–1450CrossRefGoogle Scholar
  40. Yang B, Wang JS, Bräuning A, Dong ZB, Esper J (2009) Late Holocene climatic and environmental changes in arid central Asia. Quatern Int 194:68–78CrossRefGoogle Scholar
  41. Zhang Q, Gemmer M, Chen J (2008) Climate change and flood/drought risk in the Yangtze delta, China, during the past millennium. Quatern Int 176–177:62–69CrossRefGoogle Scholar
  42. Zhang Y, Kong ZC, Yan S, Yang ZJ, Ni J (2009) “Medieval warm period” on the northern slope of central Tianshan mountains, Xinjiang, NW China. Geophys Res Lett 36:L11702CrossRefGoogle Scholar
  43. Zhu X, Fraedrich K, Blender R (2006) Variability regimes of simulated Atlantic MOC. Geophys Res Lett 33:L21603CrossRefGoogle Scholar
  44. Zorita E, von Storch H, González-Rouco F, Cubasch U, Luterbacher J, Legutke S, Fischer-Bruns I, Schlese U (2004) Climate evolution in the last five centuries simulated by an atmosphere–ocean model: global temperatures, the North Atlantic Oscillation and the Late Maunder Minimum. Meteorol Zeitschr 13:271–289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Dan Zhang
    • 1
    • 2
    • 3
  • Richard Blender
    • 1
  • Xiuhua Zhu
    • 4
  • Klaus Fraedrich
    • 1
    • 4
    Email author
  1. 1.Meteorological Institute, KlimaCampusUniversity of HamburgHamburgGermany
  2. 2.Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  3. 3.Graduate School of the Chinese Academy of SciencesBeijingChina
  4. 4.Max Planck Institute for Meteorology, KlimaCampusHamburgGermany

Personalised recommendations