Theoretical and Applied Climatology

, Volume 102, Issue 1–2, pp 205–212 | Cite as

Stationarity of atmospheric waves and blocking over Europe—based on a reanalysis dataset and two climate scenarios

Original Paper


In this investigation, a circulation index was used which is capable of tracing blocked states of the hemispheric circulation which has a relevance for a mid-latitude window between 40° and 60°N and between 30°W and 30°E. Results with respect to the seasonality of blocking situations are presented. Additionally, it is shown to which degree the circulation conditions, as they are simulated by the ECHAM5-MPI/OM1 climate model, have a tendency to exhibit blocking. Finally, results are presented which indicate the developments in blocking if the index is applied to scenario runs of the model.



This work was made possible by funds from the State of Saxony, grant AZ 13-8802.3529/47.


  1. Barriopedro D, Garcia-Herrera R, Lupo A, Hernandez A (2006) A climatology of northern hemispheric blocking. J Climate 19:1042–1063CrossRefGoogle Scholar
  2. Berggren R, Bolin B, Rossby CG (1949) An aerological study of zonal motion, its perturbarions and break-downs. Tellus 1:14–37CrossRefGoogle Scholar
  3. Charney J (1947) The dynamics of long waves in a westerly baroclinic current. J Meteorol 4:135–162CrossRefGoogle Scholar
  4. Charney J, DeVore J (1979) Multiple flow equilibria in the atmosphere and blocking. J Atmos Sci 36:1205–1216CrossRefGoogle Scholar
  5. Cox D, Stuart A (1955) Quick sign tests for trend in location and dispersion. Biometrika 42:80–95CrossRefGoogle Scholar
  6. Croci-Maspoli M (2005) Climatological investigations of atmospheric blocking—a dynamically based statistical analysis. Ph.D. thesis, Swiss Federal Institute of Technology, ZurichGoogle Scholar
  7. D’Andrea F, Tibaldi S, Blackburn M, Boer G, Déqué M, Dix M, Dugas B, Ferranto L, Iwasaki T, Kitoh A, Pope V, Randall D, Roeckner E, Straus D, Stern W, Dool HVD, Williamson D (1998) Atmospheric model intercomparison project (AMIP). northern hemosphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Clim Dyn 14:385–407CrossRefGoogle Scholar
  8. Enke W, Spekat A, Kreienkamp F (2007) Untersuchung der Auswirkung der Stationarität globaler atmosphärischer Wellen und Interpretation von Transwetterlagen für Dürre- und Hochwasserereignisse in Sachsen: BLOCKWETT. Zwischenbericht. Tech. Rep. AZ 13-8802.3529/47, Sächsisches Landesamt für Umwelt und Geologie, DresdenGoogle Scholar
  9. Geb M (1966) Synoptisch-Statistische Untersuchungen zur Einleitung blockierender Hochdrucklagen über dem Nordostatlantik und Europa. Abhandlungen des Instituts für Meteorologie und Geophysik der Freien Universität Berlin 69:1–91, Verlag Dietrich ReimerGoogle Scholar
  10. Hegerl G, Zwiers F, Braconnot P, Gillett N, Luo Y, Orsini JM, Nicholls N, Penner J, Stott P (2007) Understanding and Attributing Climate Change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, chap 9. Cambridge University Press, Cambridge, UK, pp 663–746Google Scholar
  11. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, Whitea G, Woolen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year Reanalysis Project. Bull Am Met Soc 77:437–471CrossRefGoogle Scholar
  12. Lejenäs H, Økland H (1983) Characteristics of northern hemisphere blocking as determined from a long time series of observational data. Tellus 35A:350–362CrossRefGoogle Scholar
  13. Lupo A, Oglesby R, Mokhov I (1997) Climatological features of blocking anticyclones: A study of northern hemisphere CCM1 model blocking events in present-day and double CO2 concentration atmospheres. Clim Dyn 13:181–195CrossRefGoogle Scholar
  14. Namias J, Clapp P (1951) Observational studies of general circulation patterns. American Meteorological Society, Boston, USA, chap 9–The General Circulation, pp 551–567Google Scholar
  15. Pelly J, Hoskins B (2003) A new perspective on blocking. J Atmos Sci 60:743–755CrossRefGoogle Scholar
  16. Quadrelli R, Pavan V, Molteni F (2001) Wintertime variability of mediterranean precipitation and its links with large-scale circulation anomalies. Clim Dyn 17:457–466CrossRefGoogle Scholar
  17. Renwick J, Wallace J (1996) Relationships between northern pacific wintertime blocking. El Niño and the PNA pattern. Mon Wea Rev 124:2071–2076CrossRefGoogle Scholar
  18. Rex D (1950) Blocking action in the middle troposphere and its effect upon regional climate. Part I: an aerological study of blocking action. Tellus 2:196–211CrossRefGoogle Scholar
  19. Roeckner E, Baeuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5—part 1: model description, MPI-Berichte, vol 349. Max-Planck-Institut für Meteorologie, HamburgGoogle Scholar
  20. Rossby C (1939) Relation between variations in the intensity of the zonal circulation of the atmosphäre and the displacements of the semi-permanent centers in action. J Mar Res 2:38–55CrossRefGoogle Scholar
  21. Tibaldi S, Molteni F (1990) On the operational predictability of blocking. Tellus, Series A 42:343–365CrossRefGoogle Scholar
  22. Tibaldi S, D’Andrea F, Tosi E, Roeckner E (1997) Climatology of northern hemisphere blocking in the ECHAM model. Clim Dyn 13:649–666CrossRefGoogle Scholar
  23. Trenberth K, Jones P, Ambenje P, Bojariu R, Easterling D, Tank AK, Parker D, Rahimzadeh F, Renwick J, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, chap 3. Cambridge University Press, Cambridge, UK and New York, USA, chap 3, pp 235–336Google Scholar
  24. Tung K (1979) A theory of stationary long waves. Part III: quasi-normal modes in a singular waveguide. Mon Wea Rev 107:751–774CrossRefGoogle Scholar
  25. Tung K, Lindzen R (1979a) A theory of stationary long waves. Part I: a simple theory of blocking. Mon Wea Rev 107:714–734CrossRefGoogle Scholar
  26. Tung K, Lindzen R (1979b) A theory of stationary long waves. Part II: resonant rossby waves in the presence of realistic vertical shear. Mon Wea Rev 107:735–750CrossRefGoogle Scholar
  27. Uppala S, Kållberg P, Simmons A, Andrae U, da Costa Bechtold V, Fiorino M, J JG, Haseler, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Isaksen BHL, Janssen P, Jenne R, McNally A, Mahfouf JF, Morcrette JJ, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  28. Verdecchia M, Visconti G, D’Andrea F, Tibaldi S (1996) A neural network approach for blocking recognition. Geophys Res Lett 23:2081–2084CrossRefGoogle Scholar
  29. Walker G (1924) Correlation of seasonal variations in weather IX: a further study of world weather. Mem Indian Meteor Dep 24:275–332Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Climate and Environment Consulting Potsdam GmbHPotsdamGermany

Personalised recommendations