Theoretical and Applied Climatology

, Volume 101, Issue 1–2, pp 149–160 | Cite as

Energy balance closure for the LITFASS-2003 experiment

  • Thomas Foken
  • Matthias Mauder
  • Claudia Liebethal
  • Florian Wimmer
  • Frank Beyrich
  • Jens-Peter Leps
  • Siegfried Raasch
  • Henk A. R. DeBruin
  • Wouter M. L. Meijninger
  • Jens Bange
Original Paper

Abstract

In the first part, this paper synthesises the main results from a series of previous studies on the closure of the local energy balance at low-vegetation sites during the LITFASS-2003 experiment. A residual of up to 25% of the available energy has been found which cannot be fully explained either by the measurement uncertainty of the single components of the surface energy balance or by the length of the flux-averaging period. In the second part, secondary circulations due to heterogeneities in the surface characteristics (roughness, thermal and moisture properties) are discussed as a possible cause for the observed energy balance non-closure. This hypothesis seems to be supported from the fluxes derived from area-averaging measurement techniques (scintillometers, aircraft).

Keywords

Heat Flux Latent Heat Flux Turbulent Flux Soil Heat Flux Secondary Circulation 

Notes

Acknowledgement

The work presented has been performed as part of the EVA_GRIPS project; this project was funded by the Federal Ministry of Education, Science, Research and Technology within the German Climate Research Program (DEKLIM, project EVA-GRIPS). Participation of the Wageningen group in LITFASS-2003 was based on own funding and support of the Dutch Science Foundation (NWO, project number 813.03.007). LES runs were performed on the NEC-SX6 of the German High Performance Computing Centre for Climate- and Earth System Research (DKRZ), Hamburg. This paper was written in preparation of the projects BA 1988/10-1, RA 617/21-1, BE 2044/4-1 and FO 226/20-1 funded by the German Science Foundation (DFG), which will continue support of this topic.

References

  1. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175CrossRefGoogle Scholar
  2. Bange J, Spieß T, Herold M, Beyrich F, Hennemuth B (2006a) Turbulent fluxes from Helipod flights above quasi-heterogeneous patches within the LITFASS area. Boundary-Layer Meteorol 121:127–151CrossRefGoogle Scholar
  3. Bange J, Zittel P, Spieß T, Uhlenbrock J, Beyrich F (2006b) A new method for the determination of area-averaged turbulent surface fluxes from low-level flights using inverse models. Boundary-Layer Meteorol 119:527–561CrossRefGoogle Scholar
  4. Beyrich F, Mengelkamp H-T (2006) Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment—an overview. Boundary-Layer Meteorol 121:5–32CrossRefGoogle Scholar
  5. Beyrich F, DeBruin HAR, Meijninger WML, Schipper JW, Lohse H (2002a) Results from one-year continuous operation of a large aperture scintillometer over a heterogeneous land surface. Boundary-Layer Meteorol 105:85–97CrossRefGoogle Scholar
  6. Beyrich F, Richter SH, Weisensee U, Kohsiek W, Lohse H, DeBruin HAR, Foken T, Göckede M, Berger FH, Vogt R, Batchvarova E (2002b) Experimental determination of turbulent fluxes over the heterogeneous LITFASS area: selected results from the LITFASS-98 experiment. Theor Appl Climat 73:19–34CrossRefGoogle Scholar
  7. Beyrich F, Leps J-P, Mauder M, Bange U, Foken T, Huneke S, Lohse H, Lüdi A, Meijninger WML, Mironov D, Weisensee U, Zittel P (2006) Area-averaged surface fluxes over the LITFASS region on eddy-covariance measurements. Boundary-Layer Meteorol 121:33–65CrossRefGoogle Scholar
  8. Bolle H-J, André J-C, Arrie JL, Barth HK, Bessemoulin P, Brasa A, DeBruin HAR, Cruces J, Dugdale G, Engman ET, Evans DL, Fantechi R, Fiedler F, Van de Griend A, Imeson AC, Jochum A, Kabat P, Kratsch P, Lagouarde J-P, Langer I, Llamas R, Lopes-Baeza E, Melia Muralles J, Muniosguren LS, Nerry F, Noilhan J, Oliver HR, Roth R, Saatchi SS, Sanchez Diaz J, De Santa Olalla M, Shutleworth WJ, Sogaard H, Stricker H, Thornes J, Vauclin M, Wickland D (1993) EFEDA: European field experiment in a desertification-threatened area. Annales Geophysicae 11:173–189Google Scholar
  9. Cava D, Contini D, Donateo A, Martano P (2008) Analysis of short-term closure of the surface energy balance above short vegetation. Agric Forest Meteorol 148:82–93CrossRefGoogle Scholar
  10. Culf AD, Foken T, Gash JHC (2004) The energy balance closure problem. In: Kabat P et al (eds) Vegetation, water, humans and the climate. A new perspective on an interactive system. Springer, Berlin, pp 159–166Google Scholar
  11. de Vries DA (1963) Thermal Properties of Soils. In: van Wijk WR (ed) Physics of the plant environment. North-Holand, Amsterdam, pp 210–235Google Scholar
  12. Deardorff JW (1972) Numerical investigation of neutral und unstable planetary boundary layer. J Atmos Sci 29:91–115CrossRefGoogle Scholar
  13. Desjardins RL, MacPherson JI, Schuepp PH, Karanja F (1989) An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat. Boundary-Layer Meteorol 47:55–69CrossRefGoogle Scholar
  14. Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques, part I: averaging and coordinate rotation. Boundary-Layer Meteorol 107:1–48CrossRefGoogle Scholar
  15. Flamant C, Pelon J, Flamant PH, Durand P (1997) LIDAR determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Boundary-Layer Meteorol 83:247–284CrossRefGoogle Scholar
  16. Foken T (2008) The energy balance closure problem—an overview. Ecolog Appl 18:1351–1367CrossRefGoogle Scholar
  17. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric Forest Meteorol 78:83–105CrossRefGoogle Scholar
  18. Foken T, Dlugi R, Kramm G (1995) On the determination of dry deposition and emission of gaseous compounds at the biosphere–atmosphere interface. Meteorol Z 4:91–118Google Scholar
  19. Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post-field data quality control. In: Lee X, Massman WJ, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 181–208Google Scholar
  20. Foken T, Mauder M, Liebethal C, Wimmer F, Beyrich F, Raasch S, DeBruin HAR, Meijninger WML, Bange J (2006a) Attempt to close the energy balance for the LITFASS-2003 experiment. 27th Symp Agricul Forest Meteorol, San Diego, 22–27 May 2006, American Meteorological Society, paper 1.11Google Scholar
  21. Foken T, Wimmer F, Mauder M, Thomas C, Liebethal C (2006b) Some aspects of the energy balance closure problem. Atmos Chem Phys 6:4395–4402CrossRefGoogle Scholar
  22. Friedrich K, Mölders N, Tetzlaff G (2000) On the influence of surface heterogeneity on the Bowen-ratio: a theoretical case study. Theor Appl Climat 65:181–196CrossRefGoogle Scholar
  23. Friehe CA (1991) Air–sea fluxes and surface layer turbulence around a sea surface temperature front. J Geophys Res C96:8593–8609CrossRefGoogle Scholar
  24. Göckede M, Rebmann C, Foken T (2004) A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites. Agric Forest Meteorol 127:175–188CrossRefGoogle Scholar
  25. Göckede M, Markkanen T, Hasager CB, Foken T (2006) Update of a footprint-based approach for the characterisation of complex measuring sites. Boundary-Layer Meteorol 118:635–655CrossRefGoogle Scholar
  26. Heusinkveld BG, Jacobs AFG, Holtslag AAM, Berkowicz SM (2004) Surface energy balance closure in an arid region: role of soil heat flux. Agric Forest Meteorol 122:21–37CrossRefGoogle Scholar
  27. Högström U, Smedman A (2004) Accuracy of sonic anemometers: laminar wind-tunnel calibrations compared to atmospheric in situ calibrations against a reference instrument. Boundary-Layer Meteorol 111:33–54CrossRefGoogle Scholar
  28. Højstrup J (1981) A simple model for the adjustment of velocity spectra in unstable conditions downstream of an abrupt change in roughness and heat flux. Boundary-Layer Meteorol 21:341–356CrossRefGoogle Scholar
  29. Inagaki A, Letzel MO, Raasch S, Kanda M (2006) Impact of surface heterogeneity on energy balance: a study using LES. J Meteorol Soc Japan 84:187–198CrossRefGoogle Scholar
  30. Jegede OO, Foken T (1999) A study of the internal boundary layer due to a roughness change in neutral conditions observed during the LINEX field campaigns. Theor Appl Climat 62:31–41CrossRefGoogle Scholar
  31. Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface layer turbulence. Quart J Roy Meteorol Soc 98:563–589CrossRefGoogle Scholar
  32. Kanda M, Inagaki A, Letzel MO, Raasch S, Watanabe T (2004) LES study of the energy imbalance problem with eddy covariance fluxes. Boundary-Layer Meteorol 110:381–404CrossRefGoogle Scholar
  33. Kanemasu ET, Verma SB, Smith EA, Fritschen LY, Wesely M, Fild RT, Kustas WP, Weaver H, Steawart YB, Geney R, Panin GN, Moncrieff JB (1992) Surface flux measurements in FIFE: an overview. J Geophys Res 97:18.547–18.555Google Scholar
  34. Klaassen W, van Breugel PB, Moors EJ, Nieveen JP (2002) Increased heat fluxes near a forest edge. Theor Appl Climat 72:231–243CrossRefGoogle Scholar
  35. Kohsiek W, Meijninger WML, DeBruin HAR, Beyrich F (2006) Saturation of the large aperture scintillometer. Boundary-Layer Meteorol 121:111–126CrossRefGoogle Scholar
  36. Kohsiek W, Liebethal C, Foken T, Vogt R, Oncley SP, Bernhofer C, DeBruin HAR (2007) The Energy Balance Experiment EBEX-2000. Part III: behaviour and quality of radiation measurements. Boundary-Layer Meteorol 123:55–75CrossRefGoogle Scholar
  37. Laubach J, Teichmann U (1996) Measuring energy budget components by eddy correlation: data corrections and application over low vegetation. Contr Atmosph Phys 69:307–320Google Scholar
  38. Liebethal C (2006) On the determination of the ground heat flux in micrometeorology and its influence on the energy balance closure. Ph.D. thesis, University of Bayreuth, Bayreuth, 143 ppGoogle Scholar
  39. Liebethal C, Foken T (2003) On the significance of the Webb correction to fluxes. Boundary-Layer Meteorol 109:99–106CrossRefGoogle Scholar
  40. Liebethal C, Foken T (2004) On the significance of the Webb correction to fluxes. Corrigendum. Boundary-Layer Meteorol 113:301CrossRefGoogle Scholar
  41. Liebethal C, Huwe B, Foken T (2005) Sensitivity analysis for two ground heat flux calculation approaches. Agric Forest Meteorol 132:253–262CrossRefGoogle Scholar
  42. Linne H, Hennemuth B, Bosenberg J, Ertel K (2006) Water vapour flux profiles in the convective boundary layer. Theor Appl Climat 87:201–211CrossRefGoogle Scholar
  43. Liu H, Peters G, Foken T (2001) New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Boundary-Layer Meteorol 100:459–468CrossRefGoogle Scholar
  44. Mauder M, Foken T (2004) Documentation and instruction manual of the eddy covariance software package TK2. Arbeitsergebn 26, Univ Bayreuth, Abt Mikrometeorol. ISSN 1614-8916, 42 ppGoogle Scholar
  45. Mauder M, Foken T (2006) Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorol Z 15:597–609CrossRefGoogle Scholar
  46. Mauder M, Liebethal C, Göckede M, Leps J-P, Beyrich F, Foken T (2006) Processing and quality control of flux data during LITFASS-2003. Boundary-Layer Meteorol 121:67–88CrossRefGoogle Scholar
  47. Mauder M, Jegede OO, Okogbue EC, Wimmer F, Foken T (2007a) Surface energy flux measurements at a tropical site in West-Africa during the transition from dry to wet season. Theor Appl Climat 89:171–183CrossRefGoogle Scholar
  48. Mauder M, Oncley SP, Vogt R, Weidinger T, Ribeiro L, Bernhofer C, Foken T, Kohsiek W, DeBruin HAR, Liu H (2007b) The Energy Balance Experiment EBEX-2000. Part II: intercomparison of eddy covariance sensors and post-field data processing methods. Boundary-Layer Meteorol 123:29–54CrossRefGoogle Scholar
  49. Mauder MR, Desjardins RL, MacPherson IJ (2007c) Scale analysis of airborne flux measurements over heterogeneous terrain in a boreal ecosystem. J Geophys Res 112:13112CrossRefGoogle Scholar
  50. Mauder M, Foken T, Clement R, Elbers J, Eugster W, Grünwald T, Heusinkveld B, Kolle O (2008) Quality control of CarboEurope flux data—part 2: inter-comparison of eddy-covariance software. Biogeosci 5:451–462CrossRefGoogle Scholar
  51. Meijninger WML, Green AE, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, DeBruin HAR (2002) Determination of area-averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface—Flevoland field experiment. Boundary-Layer Meteorol 105:63–83CrossRefGoogle Scholar
  52. Meijninger WML, Lüdi A, Beyrich F, Kohsiek W, DeBruin HAR (2006) Scintillometer-based turbulent surface fluxes of sensible and latent heat over heterogeneous a land surface—a contribution to LITFASS-2003. Boundary-Layer Meteorol 121:89–110CrossRefGoogle Scholar
  53. Mengelkamp H-T, Beyrich F, Heinemann G, Ament F, Bange J, Berger FH, Bösenberg J, Foken T, Hennemuth B, Heret C, Huneke S, Johnsen K-P, Kerschgens M, Kohsiek W, Leps J-P, Liebethal C, Lohse H, Mauder M, Meijninger WML, Raasch S, Simmer C, Spieß T, Tittebrand A, Uhlenbrook S, Zittel P (2006) Evaporation over a heterogeneous land surface: the EVA_GRIPS project. Bull Amer Meteorol Soc 87:775–786CrossRefGoogle Scholar
  54. Meyers TP, Hollinger SE (2004) An assessment of storage terms in the surface energy of maize and soybean. Agric Forest Meteorol 125:105–115CrossRefGoogle Scholar
  55. Moncrieff J (2004) Surface turbulent fluxes. In: Kabat P et al (eds) Vegetation, water, humans and the climate. A new perspective on an interactive system. Springer, Berlin, pp 173–182Google Scholar
  56. Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37:17–35CrossRefGoogle Scholar
  57. Nakai T, van der Molen MK, Gash JHC, Kodama Y (2006) Correction of sonic anemometer angle of attack errors. Agric Forest Meteorol 136:19–30CrossRefGoogle Scholar
  58. Ohmura A, Dutton EG, Forgan B, Fröhlich C, Gilgen H, Hegner H, Heimo A, König-Langlo G, McArthur B, Müller G, Philipona R, Pinker R, Whitlock CH, Dehne K, Wild M (1998) Baseline Surface Radiation Network (BSRN/WCRP): new precision radiometry for climate research. Bull Amer Meteorol Soc 79:2115–2136CrossRefGoogle Scholar
  59. Oliphant AJ, Grimmond CSB, Zutter HN, Schmid HP, Su H-B, Scott SL, Offerle B, Randolph JC, Ehman J (2004) Heat storage and energy balance fluxes for a temperate deciduous forest. Agric Forest Meteorol 126:185–201CrossRefGoogle Scholar
  60. Oncley SP, Businger JA, Itsweire EC, Friehe CA, LaRue JC, Chang SS (1990) Surface layer profiles and turbulence measurements over uniform land under near-neutral conditions. 9th Symp on Boundary Layer and Turbulence, Roskilde, Denmark, April 30–May 3, 1990, Am Meteorol Soc 237–240Google Scholar
  61. Oncley SP, Foken T, Vogt R, Kohsiek W, DeBruin HAR, Bernhofer C, Christen A, van Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L, Weidinger T (2007) The Energy Balance Experiment EBEX-2000, part I: overview and energy balance. Boundary-Layer Meteorol 123:1–28CrossRefGoogle Scholar
  62. Panin GN, Tetzlaff G, Raabe A (1998) Inhomogeneity of the land surface and problems in the parameterization of surface fluxes in natural conditions. Theor Appl Climat 60:163–178CrossRefGoogle Scholar
  63. Raasch S, Schröter M (2001) PALM—a large-eddy simulation model performing on massively parallel computers. Meteorol Z 10:363–372CrossRefGoogle Scholar
  64. Rannik Ü, Aubinet M, Kurbanmuradov O, Sabelfeld KK, Markkanen T, Vesala T (2000) Footprint analysis for measurements over heterogeneous forest. Boundary-Layer Meteorol 97:137–166CrossRefGoogle Scholar
  65. Rannik U, Markkanen T, Raittila T, Hari P, Vesala T (2003) Turbulence statistics inside and above forest: influence on footprint prediction. Boundary-Layer Meteorol 109:163–189CrossRefGoogle Scholar
  66. Ruppert J, Thomas C, Foken T (2006) Scalar similarity for relaxed eddy accumulation methods. Boundary-Layer Meteorol 120:39–63CrossRefGoogle Scholar
  67. Sakai R, Fitzjarrald D, Moore KE (2001) Importance of low-frequency contributions to eddy fluxes observed over rough surfaces. J Appl Meteorol 40:2178–2192CrossRefGoogle Scholar
  68. Schmid HP, Bünzli D (1995a) The influence of the surface texture on the effective roughness length. Quart J Roy Meteorol Soc 121:1–21CrossRefGoogle Scholar
  69. Schmid HP, Bünzli D (1995b) Reply to comments by E. M. Blyth on ‘The influence of surface texture on the effective roughness length’. Quart J Roy Meteorol Soc 121:1173–1176Google Scholar
  70. Schotanus P, Nieuwstadt FTM, DeBruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Boundary-Layer Meteorol 26:81–93CrossRefGoogle Scholar
  71. Steinfeld G, Letzel MO, Raasch S, Kanda M, Inagaki A (2007) Spatial representativeness of single tower measurements and the imbalance problem with eddy-covariance fluxes: results of a large-eddy simulation study. Boundary-Layer Meteorol 123:77–98CrossRefGoogle Scholar
  72. Tanner BD, Swiatek E, Greene JP (1993) Density fluctuations and use of the krypton hygrometer in surface flux measurements. In: Allen RG (ed) Management of irrigation and drainage systems: integrated perspectives. American Society of Civil Engineers, New York, pp 945–952Google Scholar
  73. Thomas C, Foken T (2007) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Boundary-Layer Meteorol 123:317–337CrossRefGoogle Scholar
  74. Tsvang LR, Fedorov MM, Kader BA, Zubkovskii SL, Foken T, Richter SH, Zelený J (1991) Turbulent exchange over a surface with chessboard-type inhomogeneities. Boundary-Layer Meteorol 55:141–160CrossRefGoogle Scholar
  75. Uhlenbrock J, Raasch S, Hennemuth B, Zittel P, Meijninger WML (2004) Effects of land surface heterogeneities on the boundary layer structure and turbulence during LITFASS-2003: large-eddy simulations in comparison with turbulence measurements. 6th symposium on boundary layers and turbulence, Portland (Maine), 9–13 August 2004, Am Meteorol Soc, paper 9.3Google Scholar
  76. van der Molen MK, Gash JHC, Elbers JA (2004) Sonic anemometer (co)sine response and flux measurement: II. The effect of introducing an angle of attack dependent calibration. Agric Forest Meteorol 122:95–109Google Scholar
  77. van Dijk A, Kohsiek W, DeBruin HAR (2003) Oxygen sensitivity of krypton and Lyman-alpha hygrometers. J Atm Oceanic Techn 20:143–151CrossRefGoogle Scholar
  78. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atm Oceanic Techn 14:512–526CrossRefGoogle Scholar
  79. Webb EK, Pearman GI, Leuning R (1980) Correction of the flux measurements for density effects due to heat and water vapour transfer. Quart J Roy Meteorol Soc 106:85–100CrossRefGoogle Scholar
  80. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99:127–150CrossRefGoogle Scholar
  81. Wilson KB, Goldstein AH, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Law B, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric Forest Meteorol 113:223–234CrossRefGoogle Scholar
  82. Zhang G, Thomas C, Leclerc MY, Karipot A, Gholz HL, Foken T (2007) On the effect of clearcuts on turbulence structure above a forest canopy. Theor Appl Climat 88:133–137CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Thomas Foken
    • 1
  • Matthias Mauder
    • 1
    • 2
  • Claudia Liebethal
    • 1
    • 3
  • Florian Wimmer
    • 1
    • 4
  • Frank Beyrich
    • 5
  • Jens-Peter Leps
    • 5
  • Siegfried Raasch
    • 6
  • Henk A. R. DeBruin
    • 7
    • 8
  • Wouter M. L. Meijninger
    • 7
    • 9
  • Jens Bange
    • 10
  1. 1.Department of MicrometeorologyUniversity of BayreuthBayreuthGermany
  2. 2.Institute for Meteorology and Climate Research, Atmospheric Environmental ResearchKarlsruhe Institute of TechnologyGarmisch-PartenkirchenGermany
  3. 3.e-fellows.net GmbH & Co.MunichGermany
  4. 4.Center for Environmental Systems ResearchUniversity of KasselKasselGermany
  5. 5.Lindenberg Meteorological Observatory–Richard-Aßmann-ObservatoryGerman Meteorological Service (DWD)Tauche–OT LindenbergGermany
  6. 6.Institute of Meteorology and ClimatologyLeibniz-University of HannoverHannoverGermany
  7. 7.Meteorology and Air Quality SectionWageningen University and Research CenterWageningenThe Netherlands
  8. 8.BilthovenThe Netherlands
  9. 9.Water WatchWageningenThe Netherlands
  10. 10.Institute of Aerospace SystemsTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations