Theoretical and Applied Climatology

, Volume 100, Issue 3–4, pp 423–438 | Cite as

Aerosols and their influence on radiation partitioning and savanna productivity in northern Australia

  • Kasturi Devi Kanniah
  • Jason Beringer
  • Nigel J. Tapper
  • Chuck N. Long
Original Paper


Aerosols have been shown to affect the quantity and quality of solar radiation on the Earth’s surface. Savanna regions are subject to frequent burning and release of aerosols that may impact on radiation components and possibly vegetation productivity in this region. Therefore, in this study, we have analyzed the optical properties of aerosols (aerosol optical depth (AOD) and Angstrom coefficient) from the Atmospheric Radiation Measurement site in Darwin for the periods from April 2002 to June 2005 as measured by a multifilter rotating shadowband radiometer. The influence of aerosols and their effect on surface shortwave incoming solar radiation and savanna productivity were examined for the dry season using sky radiation collection of radiometers and eddy covariance measurements from the Howard Springs flux site. Results indicated that aerosol concentrations in the region were relatively low compared to other savanna regions with the maximum monthly average AOD over the period being the greatest in October (0.29 ± 0.003 standard error at 500 nm). The highest monthly average Angstrom exponent was also found in October (1.38 ± 0.008). The relatively low aerosol concentration in this region can be attributed to the mixture of smoke aerosols with humidity haze and local circulations. Over a range of AODs from 0.1 to 0.4, we found a modest increase in the fraction of diffuse radiation to total radiation from 11% to 21%. This small increase in diffuse fraction did not affect the carbon flux significantly. However, because the current range of AOD in the region is relatively low, the region could be sensitive to increases in aerosols and diffuse fraction in the future.


Photosynthetically Active Radiation Gross Primary Productivity Aerosol Optical Depth Biomass Burning Advance Very High Resolution Radiometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by Australian Research Council grants (DP0344744 and DP0772981) and a Ph.D. scholarship from the Faculty of Arts, Monash University and University of Technology Malaysia. Dr. Long acknowledges the support of the Climate Change Research Division of the US Department of Energy as part of the ARM Program. Thanks are also extended to the Bureau of Meteorology, Darwin, for the provision of meteorological data and AERONET for making available the aerosol size distribution data.


  1. Allen G, Vaughan G, Bower KN, Williams PI, Crosier J, Flynn M, Connolly P, Hamilton JF, Lee JD, Saxton JE, Watson NM, Gallagher M, Coe H, Allan J, Choularton TW, Lewis AC (2008) Aerosols and trace-gas measurements in the Darwin area during the wet season. J Geophys Res 113:D06306. doi: 10.1029/2007JD008706 CrossRefGoogle Scholar
  2. Angstrom A (1929) On the atmospheric transmission of Sun radiation and on dust in the air. Geografiska Annaler 12:130–159CrossRefGoogle Scholar
  3. Atmospheric Radiation Measurement (2004) SKYRAD handbook, ARM TR-026. Available from Accessed 02 Jan 2009
  4. Badarinath KVS, Kharol SK, Kaskaoutis DG, Kambezidis HD (2007) Influence of atmospheric aerosols on solar spectral irradiance in an urban area. J Atmos Solar Terrestrial Phys 69:589–599CrossRefGoogle Scholar
  5. Beringer J, Packham D, Tapper NJ (1995) Biomass burning and resulting emissions in the Northern Territory, Australia. Int J Wildland Fire 5:229–235CrossRefGoogle Scholar
  6. Beringer J, Hutley LB, Tapper NJ, Coutts A, Kerley A, O'grady AP (2003) Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in north Australia. Int J Wildland Fire 5:229-235Google Scholar
  7. Beringer J, Hutley LB, Tapper NJ, Cernusak LA (2007) Savanna fires and their impact on net ecosystem productivity in North Australia. Glob Change Biol 13:990–1004CrossRefGoogle Scholar
  8. Bourliere F (1983) Ecosystems of the world 13: Tropical Savannas. Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, p 730Google Scholar
  9. Bowman DM, Dingle JS, Johnston JK, Parry FH, Foley M (2006) Seasonal patterns in biomass smoke pollution and the mid 20th-century transition from Aboriginal to European fire management in northern Australia. Glob Ecol Biogeog 16:246–256CrossRefGoogle Scholar
  10. Carr SB, Gras JL, Hackett MT, Keywood MD (2005) Aerosol characterisation in the Northern Territory of Australia during the dry season with an emphasis on biomass burning, Intelligence, Surveillance and Reconnaissance Division DSTO Defence Science and Technology Organisation Edinburgh, South Australia, p. 75. Available from Accessed 25 Dec 2008
  11. Cohan D, Xu J, Greenwald R, Bergin MH, Chameides WL (2002) Impact of atmospheric aerosol light scattering and absorption on terrestrial net primary productivity. Glob Biogeochem Cycles 16:1090. doi: 1010.1029/2001GB001441 CrossRefGoogle Scholar
  12. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, Da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 500–587Google Scholar
  13. Eamus D, Hutley LB, O'grady AP (2001) Daily and seasonal patterns of carbon and water fluxes above a north Australian savanna. Tree Physiology 21:977–988Google Scholar
  14. Eck TF, Holben BN, Ward DE, Mukelabai MM, Dubovik O, Smirnov A, Schafer JS, Hsu NC, Piketh SJ, Queface A, Le Roux J, Swap RJ, Slutsker I (2003a) Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements. J Geophys Res 108:8477. doi: 8410.1029/2002JD002321 CrossRefGoogle Scholar
  15. Eck TF, Holben BN, Reid SJ, O'neil NT, Schafer JS, Dubovik O, Smirnov A, Yamasoe MA, Artaxo P (2003b) High aerosol optical depth biomass burning events: a comparison of optical properties for different source regions. Geophys Res Lett 30:2035. doi: 2010.1029/2003GL017861 CrossRefGoogle Scholar
  16. Eck TF, Holben BN, Dubovik O, Smirnov A, Goloub P, Chen HB, Chatenet B, Gomes L, Zhang XY, Tsay SC, Ji Q, Giles D, Slutsker I (2005) Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific. J Geophys Res 110:D06202. doi: 10.1029/2004JD005274 CrossRefGoogle Scholar
  17. Farquhar GD, Roderick ML (2003) Pinatubo, diffuse light, and the carbon cycle. Science 299:1997–1998CrossRefGoogle Scholar
  18. Finch DA, Bailey WG, Mcarthur LJB, Nasitwitwi M (2004) Photosynthetically Active Radiation regimes in a southern African savanna environment. Agr Forest Meteorol 122:229–238Google Scholar
  19. Fischlin A, Midgley GF, Price JT, Leemans R, Gopal B, Turley C, Rounsevell MDA, Dube OP, Tarazona J, Velichko AA (2007) Ecosystems, their properties, goods, and services. In: Parry ML, Canziani OF, Palutikof JP, Van Der Linden PJ, Hansonand CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 211–272Google Scholar
  20. Flynn D, Hodges G (2005) Multi-filter rotating shadowband radiometer (MFRSR) handbook, ARM TR-059. Available from: Accessed 02 Jan 2009
  21. Global Carbon Project (2003) Science framework and implementation. Earth system science partnership (IGBP, IHDP, WCRP, DIVERSITAS) report no. 1, Global Carbon Project report no. 1, 587, Canberra, p 69Google Scholar
  22. Grace J, Jose JS, Meir P, Miranda HS, Montes RA (2006) Productivity and carbon fluxes of tropical savannas. J Biogeogr 33:387–400Google Scholar
  23. Graham EA, Mulkey SS, Kitajima K, Phillips NG, Wright SJ (2003) Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proc Natl Acad Sci USA 100:572–576CrossRefGoogle Scholar
  24. Gras JL, Jensen JB, Okada K, Ikegami M, Zaizen Y, Makino Y (1999) Some optical properties of smoke aerosols in Indonesia and tropical Australia. Geophys Res Let 26:1393–1396CrossRefGoogle Scholar
  25. Greenwald R, Bergin MH, Xu G, Cohan D, Hoogenboom G, Chameides WL (2006) The influence of aerosols on crop production: a study using the CERES crop model. Agr Syst 89:390–413CrossRefGoogle Scholar
  26. Gu L, Baldocchi DD, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res 107:4050. doi: 10.1029/20001JD001242 CrossRefGoogle Scholar
  27. Gu L, Baldocchi DD, Wofsy SC, Munge JW, Michalsky JJ, Urbanski SP, Bodn TA (2003) Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299:2035–2038CrossRefGoogle Scholar
  28. Hao WM, Liu MH (1994) Spatial and temporal distribution of biomass burning. Glob Biogeochem Cycles 8:495–503CrossRefGoogle Scholar
  29. Holben BN, Tanre D, Smirnov A, Eck TF, Slutsker I, Abuhassan N, Newcomb WW, Schafer JS, Chatenet B, Lavenu F, Kaufman YJ, Castle JV, Setzer A, Markham B, Clark D, Frouin R, Halthore R, Karneli A, O'neill NT, Pietras C, Pinker RT, Voss K, Zibordi G (2001) An emerging ground based aerosol climatology: aerosol optical depth from AERONET. J Geophys Res 106(12012):12097Google Scholar
  30. Hutley LB, O'grady AP, Eamus D (2000) Evapotranspiration from Eucalypt open-forest savanna of northern Australia. Func Ecol 14:183–194CrossRefGoogle Scholar
  31. Hutley LB, Leuning R, Beringer J, Cleugh HA (2005) The utility of the eddy covariance techniques as a tool in carbon accounting: tropical savanna as a case study. Aust J Botany 53:663–675CrossRefGoogle Scholar
  32. Ito A, Penner JE (2004) Global estimates of biomass burning emissions based on satellite imagery for the year 2000. J Geophys Res 109:D14S05. doi: 10.1029/2003JD004423 CrossRefGoogle Scholar
  33. Kalashnikova OV, Mills FP, Elderinga A, Andersonc D (2007) Application of satellite and ground-based data to investigate the UV radiative effects of Australian aerosols. Remote Sens Environ 107:65–80CrossRefGoogle Scholar
  34. Kambezidis HD, Kaskaoutis DG (2008) Aerosol climatology over four AERONET sites: an overview. Atmos Environ 42:1892–1906CrossRefGoogle Scholar
  35. Kanniah KD (2009) Environmental controls on the temporal and spatial variability of savanna productivity in the Northern Territory, Australia, Ph.D. thesis, Monash University, AustraliaGoogle Scholar
  36. Kanniah KD, Tapper N, Beringer J, Long C, Hutley LB, Zhu X (2006) Preliminary investigations of the role of smoke aerosols on carbon uptake of a northern Australian tropical savanna. Sixteenth ARM Science Team Meeting Proceedings, Albuquerque, New Mexico, March 27–31, 2006, available on
  37. Kanniah KD, Beringer J, Hutley L, Tapper N, Zhu X (2009) Evaluations of collections 4 and 5 of the MODIS gross primary productivity product and algorithm improvement at a tropical savanna site in northern Australia. Remote Sens Environ 113:1808–1822CrossRefGoogle Scholar
  38. Kaskaoutis DG, Kambezidis HD, Jacovides CP, Steven MD (2006) Modification of solar radiation components under different atmospheric conditions in the Greater Athens Area, Greece. J Atmos Solar Terrestrial Physics 68:1043–1052Google Scholar
  39. Kaufman YJ, Gitelson A, Karnieli A, Ganor E, Fraser RS, Nakajima T, Mattoo S, Holben BN (1994) Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements. J Geophys Res 99:10341–10356CrossRefGoogle Scholar
  40. Kelley G, Hutley LB, Eamus D, Jolly P (2002) Role of savanna vegetation in soil and groundwater dynamics in a wet–dry tropical climate. In: Haig T, Knapton A, Ticknel S (eds) International Groundwater Conference, Balancing the Groundwater Budget. International Association of Hydrogeologists Northern Territory Branch, DarwinGoogle Scholar
  41. Kharol SK, Badarinath KVS (2006) Impact of biomass burning on aerosol properties over tropical urban region of Hyderabad, India. Geophys Res Lett 33:L20801. doi: 10.1029/2006GL026759 CrossRefGoogle Scholar
  42. Kim JE, Seong YR, Zhuanshi H, Kim YJ (2006) Spectral aerosol optical depth variation with different types of aerosol at Gwangju, Korea. J Atmos Solar Terrestrial Physics 68:1609–1621CrossRefGoogle Scholar
  43. Knohl A, Baldocchi DD (2008) Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. J Geophys Res 113:G02023. doi: 10.1029/2007JG000663 CrossRefGoogle Scholar
  44. Kobayashi H, Iwabuchi H (2008) A coupled 1-D atmosphere and 3-D canopy radiative transfer model for canopy reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape. Remote Sens Environ 112:173–185CrossRefGoogle Scholar
  45. Kobayashi H, Matsunaga T, Hoyano A (2005) Net primary production in Southeast Asia following a large reduction in photosynthetically active radiation owing to smoke. Geophys Res Lett 32:L02403. doi: 10.1029/2004GL021704 CrossRefGoogle Scholar
  46. Kotchenruther RA, Hobbs PV (1998) Humidification factors of aerosols from biomass burning in Brazil. J Geophys Res 103:32,081–32,089CrossRefGoogle Scholar
  47. Kvalevag MM, Myhre G (2007) Human impact on direct and diffuse solar radiation during the industrial era. J Clim 20:4874–4883CrossRefGoogle Scholar
  48. Liousse C, Devaux C, Dulac F, Cachier H (1995) Aging of savanna biomass burning aerosols: consequences on their optical properties. J Atmos Chem 22:1–17CrossRefGoogle Scholar
  49. Long CN, Ackerman TP, Gaustad KL, Cole JN (2006) Estimation of fractional sky cover from broadband shortwave radiometer measurements. J Geophys Res 111:D11204. doi: 10.1029/2005JD006475 CrossRefGoogle Scholar
  50. Matsuda R, Ohashi-Kaneko K, Fujiwara K, Goto E, Kurata K (2004) Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. Plant Cell Physiol 45:1870–1874CrossRefGoogle Scholar
  51. Matsuda R, Ohashi-Kaneko K, Fujiwara K, Kurata K (2007) Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracia L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. Soil Sci and Plant Nutrition 53:459–465CrossRefGoogle Scholar
  52. Matsui T, Beltrán-Przekurat A, Niyogi D, Pielke RA Sr, Coughenour M (2008) Aerosol light scattering effect on terrestrial plant productivity and energy fluxes over the eastern United States. J Geophys Res 113:D14S14. doi: 10.1029/2007JD009658 CrossRefGoogle Scholar
  53. Mavi HS, Tupper GJ (2004) Agrometeorology Principles and applications of climate studies in Agriculture. Food Product Press, New York, London, Oxford, p 364Google Scholar
  54. May PT, Keenam TD, Jakob CJ, Forgan B, Mitchell R, Young SA, Platt M (2002) Darwin ARCS3. Twelfth ARM Science Team Meeting Proceedings, St. Petersburg, Florida, April 8–12, 2002Google Scholar
  55. Merbold L, Ardö J, Arneth A, Scholes RJ, Nouvellon Y, De Grandcourt A, Archibald S, Bonnefond JM, Boulain N, Bruemmer C, Brueggemann N, Cappelaere B, Ceschia E, El-Khidir HAM, El-Tahir BA, Falk U, Lloyd J, Kergoat L, Le Dantec V, Mougin E, Muchinda M, Mukelabai MM, Ramier D, Roupsard O, Timouk F, Veenendaal EM, Kutsch WL (2008) Precipitation as driver of carbon fluxes in 11 African ecosystems. Biogeosci Discuss 5:4071–4105CrossRefGoogle Scholar
  56. Mercado LM, Bellouin N, Sitch S, Boucher O, Hungtingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1018Google Scholar
  57. Min Q (2005) Impacts of aerosols and clouds on forest–atmosphere carbon exchange. J Geophys Res 110:203. doi: 210.1029/2004JD004858 Google Scholar
  58. Misson L, Lunden M, Mckay M, Goldtein AH (2005) Atmospheric aerosol light scattering and surface wetness influence the diurnal pattern of net ecosystem exchange in a semi-arid ponderosa pine plantation. Agr Forest Meteorol 129:69–83CrossRefGoogle Scholar
  59. Mitchell RM, Forgan BW (2003) Aerosol measurement in the Australian outback: intercomparison of sun photometers. J Atmos Oceanic Tech 20:54–66CrossRefGoogle Scholar
  60. Moris VR (2005) Total sky imager handbook, ARM TR-017. Accessed 02 Jan 2009
  61. Nakajima T, Higurashi A, Takeuchi N, Herman JR (1999) Satellite and ground-based study of optical properties of 1997 Indonesian forest fire aerosols. Geophys Res Lett 26:2421–2424CrossRefGoogle Scholar
  62. Navratil M, Spunda V, Markova I, Janous D (2007) Spectral composition of photosynthetically active radiation penetrating into a Norway spruce canopy: the opposite dynamics of the blue/red spectral ratio during clear and overcast days. Trees-Structure Func 21:311–320Google Scholar
  63. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563CrossRefGoogle Scholar
  64. Niyogi D, Chang HI, Saxena VK, Holt T, Alapathy K, Booker F, Chen F, Davis KJ, Holben B, Matsui T, Oechel MT, WC Pielke Sr, RA WR, Wilson K, Xue Y (2004) Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes. Geophys Res Lett 31:L20506. doi: 10.1029/2004GL020915 CrossRefGoogle Scholar
  65. O'brien DM, Mitchell RM (2003) Atmospheric heating due to carbonaceous aerosol in northern Australia-confidence limits based on TOMS aerosol index and sun-photometer data. Atmos Res 66:21–41CrossRefGoogle Scholar
  66. O'grady AP, Chen X, Eamus D, Hutley LB (2000) Composition, leaf area index and standing biomass of eucalypt open forests near Darwin in the Northern Territory, Australia. Aust J Botany 48:629–638CrossRefGoogle Scholar
  67. Oliveira PHF, Paulo A, Pires C, De Lucca S, Procopio A, Holben B, Schafer J, Cardoso LF, Wofsy SC, Rocha HR (2007) The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia. Tellus B 59:338–349CrossRefGoogle Scholar
  68. Power HC (2003) The geography and climatology of aerosols. Prog Phys Geog 27:502–547CrossRefGoogle Scholar
  69. Prentice IC et al. (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van Der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate Chang 2001:The Scientific Basis. Cambridge University Press, Cambridge, p 83–237Google Scholar
  70. Prior LD, Eamus D, Duff GA (1997) Seasonal and diurnal patterns of carbon assimilation, stomatal conductance and leaf water potential in Eucalyptus tetrodonta saplings in a wet–dry savanna in northern Australia. Aust J Botany 45:259–274CrossRefGoogle Scholar
  71. Queface AJ, Piketh SJ, Annegarn HJ, Holben BN, Uthui RJ (2003) Retrieval of aerosol optical thickness and size distribution from the CIMEL sun photometer over Inhaca island, Mozambique. J Geophys Res 108:8509. doi: 8510.1029/2002JD002374 CrossRefGoogle Scholar
  72. Reid JS, Hobbs PV, Ferek RJ, Blake DR, Martins JV, Dunlap MR, Liousse C (1998) Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil. J Geophys Res 103:32,059–32,080Google Scholar
  73. Reid JS, Eck TF, Christopher SA, Koppmann R, Dubovik O, Eleuterio DP, Holben BN, Reid EA, Zhang J (2004) A review of biomass burning emissions part III: intensive optical properties of biomass burning particles. Atmos Chem Phys Discuss 4:5201–5260CrossRefGoogle Scholar
  74. Roderick ML (2006) The ever-flickering light. Trends Ecol Evol 21:3–5CrossRefGoogle Scholar
  75. Roderick ML, Farquhar GD, Berry SL, Noble IR (2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:21–30CrossRefGoogle Scholar
  76. Rotstayn LD, Cai W, Dix MR, Farquhar GD, Feng Y, Ginoux P, Herzog M, Ito A, Penner JE, Roderick ML, Wang M (2007) Have Australian rainfall and cloudiness increased due to the remote effects of Asian anthropogenic aerosols? J Geophys Res 112:D09202. doi: 10.1029/2006JD007712 CrossRefGoogle Scholar
  77. Russel-Smith J, Yates C, Edwards A, Allan GE, Cook GD, Cooke P, Craig R, Heath B, Smith R (2003) Contemporary fire regimes of northern Australia, 1997–2001: change since Aboriginal occupancy, challenges for sustainable management. Int J Wildland Fire 12:283–297CrossRefGoogle Scholar
  78. Sankaran M, Ratnam J, Hanan NP (2004) Tree–grass coexistence in savannas revisited—insights from an examination of assumptions and mechanisms invoked in existing models. Ecology Letters 7:480–490CrossRefGoogle Scholar
  79. Sankaran M, Hanan NP, Scholes RJ, Ratnam J, Cade BS, Ardo J, Augustine DJ, Banyikwa F, Bronn A, Bucini G, Caylor K, Coughenour MB, Diouf A, Ekaya W, Feral C, February EC, Frost P, Gignoux J, Hiernaux P, Higgins S, Hrabar H, Leroux X, Ludwig F, Metzger K, Prins HHT, Ringrose S, Sea W, Tews J, Worden J, Zambatis N (2005) Determinants of woody cover in African savannas. Nature 438:846–849CrossRefGoogle Scholar
  80. Sankaran M, Ratnam J, Hanan NP (2008) Woody cover in African savannas: the role of resources, fire and herbivory. Global Ecol Biogeogr 17:236–245CrossRefGoogle Scholar
  81. Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Ann Rev Ecol Systematics 28:517–544CrossRefGoogle Scholar
  82. Scholes RJ, Walker BH (1993) An African savanna—synthesis of the Nylsvley study. Cambridge University Press, Cambridge, p 306CrossRefGoogle Scholar
  83. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate. Wiley, New York, p 1326Google Scholar
  84. Spitters C, Toussaint H, Goudriaan J (1986) Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis, part I: components of incoming radiation. Agr Forest Meteorol 38:217–219CrossRefGoogle Scholar
  85. Steiner AL, Chameides WL (2005) Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration. Tellus Series B- Chem Phys Meteorol 57:404–411CrossRefGoogle Scholar
  86. Sturman AP, Tapper N (2006) Weather and climate of Australia and New Zealand. Oxford University Press, Melbourne, p 520Google Scholar
  87. Swap RJ, Annegarn HJ, Suttles T, King MD, Platnick S, Privette JL, Scholes RJ (2003) Africa burning: a thematic analysis of the Southern African Regional Science Initiative (SAFARI 2000). J Geophys Res 108:8465. doi: 10.1029/2003JD003747 CrossRefGoogle Scholar
  88. Tapper NJ, Garden G, Gill J, Fernon J (1993) The climatology and meteorology of high fire danger in the Northern Territory. Rangeland J 15:339–351CrossRefGoogle Scholar
  89. Weber U, Jung M, Reichstein M, Beer C, Braakhekke M, Lehsten V, Ghent D, Kaduk J, Viovy N, Ciais P, Gobron N, Rödenbeck C (2008) The inter-annual variability of Africa’s ecosystem productivity: a multi-model analysis. Biogeosci Discuss 5:4035–4069CrossRefGoogle Scholar
  90. Williams RJ, Myers BA, Muller WJ, Duff GA, Eamus D (1997) Leaf phenology of woody species in a North Australian tropical savanna. Ecology 78:2542–2558CrossRefGoogle Scholar
  91. Williams AAJ, Karoly DJ, Tapper NJ (2001) The sensitivity of Australian fire danger to climate change. Clim Change 49:171–191CrossRefGoogle Scholar
  92. Yamasoe MA, Von Randow C, Manzi AO, Schafer JS, Eck TF, Holben BN (2006) Effect of smoke and clouds on the transmissivity of photosynthetically active radiation inside the canopy. Atmos Chem Phys 6:1645–1656CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Kasturi Devi Kanniah
    • 1
    • 2
  • Jason Beringer
    • 2
  • Nigel J. Tapper
    • 2
  • Chuck N. Long
    • 3
  1. 1.Department of Remote SensingUniversity of Technology MalaysiaSkudaiMalaysia
  2. 2.School of Geography and Environmental ScienceMonash UniversityClaytonAustralia
  3. 3.Atmospheric Radiation Measurement ProgramPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations