Theoretical and Applied Climatology

, Volume 100, Issue 3–4, pp 251–260 | Cite as

Modelling soil heat flux

  • Claudia M. Núñez
  • Eduardo A. Varas
  • Francisco J. Meza
Original Paper

Abstract

A mathematical model to calculate soil heat flux in three steps is presented. In the first, an hourly air temperature based on the average daily temperature, using Fourier series coefficients is estimated. The estimated hourly air temperature constitutes an input variable for the second step of the model. In the second step, heat transfer principles, using the thermal properties of the soil in order to obtain a soil temperature profile in a 1-m-depth soil stratum, is applied. Finally, the results of the second stage are used to numerically calculate hourly heat flux in the soil. Correlation coefficients between observed and calculated hourly temperature values over the three summer months were 0.98, 0.97 and 0.96. Correlation coefficient for the entire study period between observed and estimated soil heat-flux values was 0.92 with a mean square error of 19.8 W m–2.

References

  1. Allen R, Pereira L, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. FAO, RomeGoogle Scholar
  2. Alvalá RCS, Gielow R, da Rocha HR, Freitas HC, Lopes JM, Manzi AO, von Randow C, Dias MAFS, Cabral OMR, Waterloo MJ (2002) Intradiurnal and seasonal variability of soil temperature, heat flux, soil moisture content, and thermal properties under forest and pasture in Rondonia. J Geophys Res 107:1–20CrossRefGoogle Scholar
  3. Berkowicz R, Prahm LD (1982) Sensible heat flux estimated from routine meteorological data by the resistance method. J Appl Meteorol 21:1845–1864CrossRefGoogle Scholar
  4. Campbell GS, Norman JM (1998) An introduction to environmental biophysics, 2nd edn. Springer, New York, 286 ppCrossRefGoogle Scholar
  5. Cellier P, Richard G, Robin P (1996) Partition of sensible heat fluxes into bare soil and the atmosphere. Agric Forest Meteorol 82:245–265CrossRefGoogle Scholar
  6. Chodhury BJ, Monteith JL (1988) A four-layer model for the heat budget of homogeneous land surfaces. Q J R Meteorol Soc 114:373–398CrossRefGoogle Scholar
  7. Clothier BE, Clawson KL, Pinter PJ, Moran MS, Reginato RJ, Jackson RD (1986) Estimation of soil heat flux from net radiation during growth of alfalfa. Agric For Meteorol 37:319–329CrossRefGoogle Scholar
  8. Crank J, Nicolson P (1947) A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc Camb Phil Soc 43:50–67CrossRefGoogle Scholar
  9. Daughtry CST, Kustas WP, Moran MS, Pinter PJ Jr, Jackson RD, Brown PW, Nichols WD, Gay LW (1990) Spectral estimates of net radiation and soil heat flux. Remote Sens Environ 32:111–124CrossRefGoogle Scholar
  10. French AN, Schmugge TJ, Kustas WP (2000) Estimating surface fluxes over the SGP site with remotely sensed data. Phys Chem Earth (B) 25(2):167–172Google Scholar
  11. Gao Z, Horton R, Wang L, Liu H, Wen J (2008) An improved force-restore method for soil temperature prediction. Eur J Soil Sci 59:972–981CrossRefGoogle Scholar
  12. Guaraglia DO, Pousa JL, Pilán L (2001) Predicting temperature and heat flow in a sandy soil by electrical modeling. Soil Sci Soc Am J 65:1074–1080CrossRefGoogle Scholar
  13. Hillel D (1998) Environmental soil physics. Academic, San Diego, 771 ppGoogle Scholar
  14. Holmes TRH, Owe M, De Jeu RAM, Kooi H (2008) Estimating the soil temperature profile from a single depth observation: a simple empirical heatflow solution. Water Resour Res 44, W02412CrossRefGoogle Scholar
  15. Jakob M (1962) Heat transfer. Wiley, New YorkGoogle Scholar
  16. Kimball BA, Jackson RD (1975) Soil heat flux determination: a null-alignment method. Agric For Meteorol 15:1–9CrossRefGoogle Scholar
  17. Kondo J, Saigusa N (1994) Modelling the evaporation from bare soil with a formula for vaporization in the soil pores. Meteorol Soc Jpn 72:413–420Google Scholar
  18. Kustas WP, Daughtry CST (1990) Estimation of the soil heat flux/net radiation ratio from spectral data. Agric For Meteor 49:205–223CrossRefGoogle Scholar
  19. Kustas WP, Prueger JH, Hatfield JL, Ramalingam K, Hipps LE (2000) Variability in soil heat flux from a mesquite dune site. Agric For Meteorol 103:249–264CrossRefGoogle Scholar
  20. Liebethal C, Huwe B, Foken T (2005) Sensitivity analysis for two ground heat flux calculation approaches. Agric For Meteorol 132:253–262CrossRefGoogle Scholar
  21. Liebethal C, Foken T (2007) Evaluation of six parameterization approaches for the ground heat flux. Theor Appl Climatol 88:43–56CrossRefGoogle Scholar
  22. Ma Y, Su Z, Li Z, Koike T, Menenti M (2002) Determination of regional net radiation and soil heat flux over a heterogeneous landscape of the Tibetan Plateau. Hydrol Process 16:2963–2971CrossRefGoogle Scholar
  23. Mayocchi CL, Bristow KL (1995) Soil surface heat flux: some general questions and comments on measurements. Agric For Meteorol 75:43–50CrossRefGoogle Scholar
  24. Monteith JI (1973) Principles of environmental physics. Arnold, London, 241 ppGoogle Scholar
  25. Novack MD, Black TA (1983) The surface heat flux density of a bare soil. Atmos Ocean 21(4):431–443CrossRefGoogle Scholar
  26. Ochsner TE, Sauer TJ, Horton R (2006) Field tests of the soil heat flux plate method and some alternatives. Agron J 98:1005–1014CrossRefGoogle Scholar
  27. Ogeé J, Lamaud E, Brunet Y, Berbigier P, Bonnefond JM (2001) A long-term study of soil heat flux under a forest canopy. Agric For Meteorol 106:173–186CrossRefGoogle Scholar
  28. Santanello JA, Friedl MA (2003) Diurnal covariation in soil heat flux and net radiation. J Appl Meteor 42:851–862CrossRefGoogle Scholar
  29. Sauer TJ, Ochsner TE, Horton R (2007) Soil heat flux plates: heat flow distortion and thermal contact resistance. Agron J 99:304–310CrossRefGoogle Scholar
  30. Su Z, Schmugge T, Kustas WP, Massman WJ (2001) An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J Appl Meteorol 40:1933–1951CrossRefGoogle Scholar
  31. Su Z (2002) The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 6(1):85–99CrossRefGoogle Scholar
  32. Tamai K, Abe T, Araki M, Ito H (1998) Radiation budget, soil heat flux and latent heat flux at the forest floor in warm, temperate mixed forest. Hydrol Process 12:2105–2114CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Claudia M. Núñez
    • 1
    • 3
  • Eduardo A. Varas
    • 1
  • Francisco J. Meza
    • 2
  1. 1.Department of Hydraulic and Environmental EngineeringPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Interdisciplinary Center for Global Change (CICG-UC)Facultad de Agronomía e Ingeniería Forestal,Pontificia Universidad Católica de ChileSantiagoChile
  3. 3.Pontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations