Influence of circulation types on temperature extremes in Europe

  • E. J. M. van den Besselaar
  • A. M. G. Klein Tank
  • G. van der Schrier
Original Paper

Abstract

The aim of this study is to determine the influence of atmospheric circulation on the recently observed changes in the number of warm days and cold days in Europe. The temperature series for stations in the European Climate Assessment and Data set project and the Grosswetterlagen (GWL) were used here. The temperature series were first adjusted for global warming before determining the indices for cold and warm extremes. The 29 GWLs were grouped in ten circulation types. Then, the number of days a certain circulation type occurred was determined for each winter (December, January and February) and summer (June, July and August). The relation between the circulation type frequencies and the temperature indices was modelled with a multi-regression fit over the period 1947–1974 and tested for the period 1974–2000. The difference between the observed indices and the calculated indices in the second period (using the fit coefficients for the first period) shows a warming effect for both winter and summer and for at least the warm day index, which is unaccounted for by the global warming trend. A simple snow model shows that variations in the European snow cover extent are likely influencing the cold and warm day indices in winter: there is a correlation between the decreasing trend of the snow cover extent in Europe and the increasing (decreasing) trend of the number of warm (cold) days for stations throughout Europe.

References

  1. Armstrong R, Brodzik M (2007) Northern Hemisphere EASE-grid weekly snow cover and sea ice extent version 3. Digital media. National Snow and Ice Data Center, BoulderGoogle Scholar
  2. Bárdossy A, Caspary H (1990) Detection of climate change in Europe by analyzing European atmospheric circulation patterns from 1881 to 1989. Theor Appl Climatol 42:155–167CrossRefGoogle Scholar
  3. Baur F, Hess P, Nagel H (1944) Kalendar der Grosswetterlagen Europas 1881–1939. Bad Homburg, Deutscher WetterdienstGoogle Scholar
  4. Braithwaite R, Zhang Y (2000) Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model. J Glaciol 46:7–14CrossRefGoogle Scholar
  5. Brohan P, Kennedy J, Harris I, Tett S, Jones P (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. Geophys Res Lett 111:D12,106Google Scholar
  6. Brown R (2000) Northern Hemisphere snow cover variability and change, 1915–97. J Climate 13:2339–2355CrossRefGoogle Scholar
  7. Cahynová M, Huth R (2009) Changes of atmospheric circulation in central Europe and their influence on climatic trends in the Czech Republic. Theor Appl Climatol 96:57–68CrossRefGoogle Scholar
  8. Chen D (2000) A monthly circulation climatology for Sweden and its application to a winter temperature case study. Int J Climatol 20:1067–1076CrossRefGoogle Scholar
  9. Christensen J, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli R, Kwon WT, Laprise R, na Rueda VM, Mearns L, Menéndez C, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 847–940Google Scholar
  10. Corti S, Molteni F, Palmer T (1999) Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398:799–802CrossRefGoogle Scholar
  11. Cubasch U, Meehl G, Boer G, Stouffer R, Dix M, Noda A, Senior C, Raper S, Yap K (2001) Projections of future climate change. In: Houghton J, Ding Y, Griggs D, Noguer MPv, Dai X, Maskell K, Johnson C (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 525–582Google Scholar
  12. Dorn W, Dethloff K, Rinke A, Roeckner E (2003) Competition of NAO regime changes and increasing greenhouse gases and aerosols with respect to Arctic climate projections. Clim Dyn 21:447–458CrossRefGoogle Scholar
  13. Dye D (2002) Variability and trends in the annual snow-cover cycle in Northern Hemisphere land areas, 1972–2000. Hydrol Process 16:3065–3077CrossRefGoogle Scholar
  14. Gerstengabe FW, Werner P, Rüge U (1999) Katalog der Grosswetterlagen Europas 1881–1998 nach P. Hess und H. Brezowsky. 5. Aufl. Potsdam-Inst F Klimafolgenforschung, Postdam, p 138Google Scholar
  15. Greuell W, Genthon C (2003) Modelling land-ice surface mass balance. In: Bamber J, Payne A (eds) Mass balance of the cryosphere: observations and modelling of contemporary and future changes. Cambridge University Press, Cambridge, pp 117–168Google Scholar
  16. Haylock M, Hofstra N, Klein Tank A, Klok E, Jones P, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res 113:D20,119CrossRefGoogle Scholar
  17. Hess P, Brezowsky H (1952) Katalog der Grosswetterlagen Europas. Berichte des Deutschen Wetterdienstes in der US-Zone 33Google Scholar
  18. Hess P, Brezowsky H (1969) Katalog der Grosswetterlagen Europas, 2. Neu bearbeitete und ergänzte Aufl. Berichte des Deutschen Wetterdienstes 113, Offenbach am MainGoogle Scholar
  19. Hess P, Brezowsky H (1977) Katalog der Grosswetterlagen Europas 1881–1976, 3. Verbesserte und ergänzte Aufl. Berichte des Deutschen Wetterdienstes 113, Offenbach am MainGoogle Scholar
  20. Hofstra N, Haylock M, New M, Jones P, Frei C (2008) Comparison of six methods for the interpolation of daily, European climate data. J Geophys Res 113:D21,110CrossRefGoogle Scholar
  21. Jones G, Stott P, Christidis N (2008) Human contribution to rapidly increasing frequency of very warm Northern Hemisphere summers. J Geophys Res 113:D02,109CrossRefGoogle Scholar
  22. Klein Tank A, Können G (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Climate 16:3665–3680CrossRefGoogle Scholar
  23. Klein Tank A, Wijngaard J, Können G, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Müller-Westermeier G, Tzanakou M, Szalai S, Pálsdóttir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, van Engelen A, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Antonio López J, Dahlström B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander L, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Climatol 22:1441–1453CrossRefGoogle Scholar
  24. Klok E, Klein Tank A (2008) Short communication: updated and extended European dataset of daily climate observations. Int J Climatol. doi:10.1002/joc.1779 Google Scholar
  25. Moberg A, Jones PD, Barriendos M, Bergström H, Camuffo D, Cocheo C, Davies T, Demarée G, Martin-Vide J, Maugeri M, Rodriguez R, Verhoeve T (2000) Day-to-day temperature variability trends in 160- to 275-year-long European instrumental records. J Geophys Res 105:849–868CrossRefGoogle Scholar
  26. Moberg A, Jones P, Lister D, Walther A, Brunet M, Jacobeit J, Alexander L, Della-Marta P, Luterbacher J, Yiou P, Chen D, Klein Tank A, Saladié O, Sigró J, Aguilar E, Alexandersson H, Almarza C, Auer I, Barriendos M, Begert M, Bergström H, Böhm R, Butler CJ, Caesar J, Drebs A, Founda D, Gerstengarbe F, Micela G, Maugeri M, Österle H, Pandzic K, Petrakis M, Srnec L, Tolasz R, Tuomenvirta H, Werner P, Linderholm H, Philipp A, Wanner H, Xoplaki E (2006) Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J Geophys Res 111:D22,106CrossRefGoogle Scholar
  27. Rauthe M, Paeth H (2004) Relative importance of Northern Hemisphere circulation modes in predicting regional climate Change. J Climate 17:4180–4189CrossRefGoogle Scholar
  28. Scaife A, Folland C, Alexander L, Moberg A, Knight J (2008) European climate extremes and the North Atlantic oscillation. J Climate 21:72–83CrossRefGoogle Scholar
  29. Scherhag R (1949) Neue Methode der Wetteranalyse und Wetterprognose. Q J R Meteorol Soc 75:442–444Google Scholar
  30. Stephenson D, Pavan V, Collins M, Junge M, Quadrelli R, Participating CMIP2 Modelling Groups (2006) North Atlantic oscillation response to transient greenhouse gas forcing and the impact on European winter climate: a CMIP2 multi-model assessment. Clim Dyn 27:401–420CrossRefGoogle Scholar
  31. Tebaldi C, Hayhoe K, Arblaster J, Meehl G (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:185–211CrossRefGoogle Scholar
  32. Tuomenvirta H, Alexandersson H, Drebs A, Frich P, Nordli P (2000) Trends in nordic and arctic temperature extremes and ranges. J Climate 13:977–990CrossRefGoogle Scholar
  33. Werner P, von Storch H (1993) Interannual variability of Central European mean temperature in January–February and its relation to large-scale circulation. Clim Res 3:195–207CrossRefGoogle Scholar
  34. Xoplaki E, González-Rouco J, Luterbacher J, Wanner H (2003) Mediterranean summer air temperature variability and its connection to the large-scale atmospheric circulation and SSTs. Clim Dyn 20:723–739Google Scholar
  35. Yan Z, Jones PD, Davies TD, Moberg A, Bergström H, Camuffo D, Cocheo C, Maugeri M, Demarée GR, Verhoeve T, Thoen E, Barriendos M, Rodríguez R, Martín-Vide J, Yang C (2002) Trends of extreme temperatures in Europe and China based on daily observations. Clim Change 53:355–392CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • E. J. M. van den Besselaar
    • 1
  • A. M. G. Klein Tank
    • 1
  • G. van der Schrier
    • 1
  1. 1.Royal Netherlands Meteorological Institute (KNMI)De BiltThe Netherlands

Personalised recommendations