Theoretical and Applied Climatology

, Volume 98, Issue 3–4, pp 337–350 | Cite as

Long-term variability of precipitation series in east central Europe in relation to circulation patterns

Original Paper


This paper discusses patterns of annual and monthly precipitation variability at seven weather stations in east central Europe (1851–2007). Precipitation patterns were compared to three simple regional indices of atmospheric circulation, i.e., western circulation, southern circulation and the cyclonicity (C) index and a relationship between precipitation and the North Atlantic Oscillation index was identified. Correlations of the monthly records and multiple regression, using a principal components’ analysis, helped determine the statistical significance of the dependence of precipitation on the circulation indices. The Mann–Kendall test revealed no trend to change in any of the precipitation series, but a certain spatial regularity could be discerned in the phase of the annual periodic component. A common feature of the variability in central European annual precipitation is the dry period identified in the 1980s and the first half of the 1990s. In the northern part of the region, above-average precipitation was noted from the 1960s through to the mid-1970s as a result of the frequent prevalence of depressions. South of the divide, the wettest period was recorded at the turn of 1930s/1940s. After a number of very wet years in the last decade of the twentieth century and the beginning of the twenty-first century, precipitation began to fall at all of the region’s weather stations. The C index is the strongest circulation-linked factor influencing precipitation in central Europe and it accounts for more than 40% of the variance in spatially averaged wintertime precipitation.


North Atlantic Oscillation Precipitation Pattern North Atlantic Oscillation Index Precipitation Variability Kendall Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are deeply grateful to Professor Maria Dubicka for making Wroclaw University’s precipitation records for 1946–2007 available to us. We also want to thank Dr. L. Nemec from the Czech Hydrometeorological Institute of Prague for providing us with a complete and homogeneous data series from the Prague–Klementinum station. Our thanks also go to Dr. P. Domonkos for his valuable comments on the Budapest series. We are deeply grateful to an anonymous reviewer for any comments that contribute to the improvement of the paper. The English translation of the paper owes much to the translation skills of Mr. Paweł Pilch and to the proofreading skills of Dr. Martin Cahn.


  1. Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675CrossRefGoogle Scholar
  2. Auer I (1993) Trends and variations in precipitation in Austria since 1845. Zesz Nauk Uniw Jagiell Pr Geogr 95:173–182Google Scholar
  3. Auer I, Böhm R (1994) Combined temperature-precipitation variations in Austria during the instrumental period. Theor Appl Climatol 49:161–174CrossRefGoogle Scholar
  4. Auer I, Böhm R, Jurković A, Orlik A, Potzmann R, Schöner W, Ungersböck M, Nanni T, Maugeri M, Briffa K, Jones P, Efthymiadis D, Mestre O, Moisselin JM, Begert M, Brazdil R, Bochnicek O, Cegnar T, Gajić-Čapka M, Zaninović K, Majstorović Ž, Szalai S, Szentimrey T, Mercalli L (2005) A new instrumental precipitation dataset for the greater Alpine region for the period 1800–2002. Int J Climatol 25:139–166CrossRefGoogle Scholar
  5. Bodri L, Cermak V, Kresl M (2005) Trends in precipitation variability: Prague (The Czech Republic). Clim Change 72:151–170CrossRefGoogle Scholar
  6. Bradley R, Diaz H, Eischeid J, Jones P, Kelly P, Goodess C (1987) Precipitation fluctuations over northern hemisphere land areas since the mid-19th century. Science 273:171–175CrossRefGoogle Scholar
  7. Brázdil R (1992) Fluctuation of atmospheric precipitation in Europe. Geojurnal 27(3):275–291CrossRefGoogle Scholar
  8. Brázdil R, Budiková M (1994) Climate variation in central Europe—facts or inhomogeneities? In: Heino R (ed) Climate variations in Europe. Proceedings of the European workshop on climate variations, Kirkkonummi (Majvik), Finland, 15–18 May. Academy of Finland, Helsinki, pp 9–29Google Scholar
  9. Brázdil R, Šamaj F, Valovič Š (1985) Variation of spatial annual precipitation sums in central Europe in the period 1881–1980. J Climatol 5:617–631CrossRefGoogle Scholar
  10. Brázdil R, Dobrovolný P, Elleder R, Kakos V, Kotyza O, Kvĕtoň V, Macková J, Müller M, Štekl J, Tolasz R, Valášek H (2005) Historical and recent floods im the Czech Republic. Masaryk University in Brno, Czech Hydrometeorological Institute in Prague, Brno-PragueGoogle Scholar
  11. Cebulak E (1992) Maximum daily precipitation in the upper Vistula Basin. Zesz Nauk UJ Pr Geogr 90:79–96, in Polish with English summaryGoogle Scholar
  12. Cebulska M, Twardosz R, Cichocki J (2007) Changes of annual precipitation totals in the Upper Vistula River Basin, 1881-2030. In: Piotrowicz K, Twardosz R (eds) Climate variation at various scales of time and space. Instytut Geografii i Gospodarki Przestrzennej UJ, Kraków, pp 383–390, in Polish with English summaryGoogle Scholar
  13. Degirmendžić J, Kożuchowski K, Żmudzka E (2004) Changes of air temperature and precipitation in Poland in the period 1951–2000 and their relationship to atmospheric circulation. Int J Climatol 24:291–310CrossRefGoogle Scholar
  14. de Martonne E (1909) Traité de Géographie physique. Colin, ParisGoogle Scholar
  15. Domonkos P (2003) Recent precipitation trends in Hungary in the context of larger scale climatic changes. Nat Hazards 29:255–271CrossRefGoogle Scholar
  16. Domonkos P, Tar K (2003) Long-term changes in observed temperature and precipitation series 1901–1998 from Hungary and their relations to larger scale changes. Theor Appl Climatol 75:131–147CrossRefGoogle Scholar
  17. Førland EJ, Hanssen-Bauer J (1995) Changes in “normal” precipitation in Norway and the North Atlantic region. In: Heikinheimo P (ed) International conference on past, present and future climate. Proceedings of the SILMU conference held in Helsinki, Finland, 22–25 August. Academy of Finland, Helsinki, pp 228–232Google Scholar
  18. Gorczyński W (1911) Sur la variabilité des précipitations d’après les observations faites à Varsovie depuis 1803. Sprawozdania z Posiedzeń Towarzystwa Naukowego Warszawskiego Wydział Nauk Matematycznych i Przyrodniczych 4(9):453–485, in Polish with the French summaryGoogle Scholar
  19. Hanssen-Bauer J, Førland EJ (1994) Homogenizing long Norwegian precipitation series. J Climate 7(6):1001–1013CrossRefGoogle Scholar
  20. Hellmann G (1906) Die Niederschläge in den Norddeutschen Stromgebieten. Dietrich Reimer, BerlinGoogle Scholar
  21. Hladný J, Krátká M, Kašpárek L (eds) (2004) August 2002 catastrophic flood in the Czech Republic. Ministry of Environment of the Czech Republic, PragueGoogle Scholar
  22. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation and relationships to regional temperature and precipitation. Science 269:676–679CrossRefGoogle Scholar
  23. IPCC (2007) Climate change 2007. The physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  24. Jones PD, Hulme M (1996) Calculating regional climatic time series for temperature and precipitation: methods and illustrations. Int J Climatol 16:361–377CrossRefGoogle Scholar
  25. Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int J Climatol 17:1433–1450CrossRefGoogle Scholar
  26. Klein Tank AMG, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Müller-Westermeier G, Tznakou M, Szalai S, Pálsdóttir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Lietass A, Bukantis A, Aberfeld R, van Engelen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Antonio López J, Dahlström B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for European Climate Assessment. Int J Climatol 22:1441–1453, Data and metadata available at or CrossRefGoogle Scholar
  27. Kożuchowski K (1985) Variation in precipitation in Poland in the years 1881–1980. Acta Univ Lodz Folia Geogr 48:1–158, in Polish with English summaryGoogle Scholar
  28. Kożuchowski K (ed) (2004) Scale, conditions and perspectives of the contemporary climatic changes in Poland, Zakład Dynamiki Środowiska i Bioklimatologii UŁ, Łódź University, Łódź (in Polish, English summary)Google Scholar
  29. Kożuchowski K, Marciniak K (1988) Variability of mean monthly temperatures and semi-annual precipitation totals in Europe in relation to hemispheric circulation patterns. Int J Climatol 8:191–199CrossRefGoogle Scholar
  30. Kożuchowski K, Wibig J (1988) Pluvial continentality in Poland: geographic variations and long-term variability. Acta Geogr Lodz 55:1–102, in Polish with English summaryGoogle Scholar
  31. Kożuchowski K, Żmudzka E (2003) 100-year series of areally averaged temperatures and precipitation totals in Poland. Acta Univ Wratisl Stud Geogr 75:116–122Google Scholar
  32. Lapin M, Pisútová Z (1998) Changes of cyclonicity, air pressure and precipitation totals in the 1901–1995 period. Meteorol Čas 1:15–22Google Scholar
  33. Maheras P, Tolika K, Anagnostopoulou Chr, Vafiadis M, Patrikas I, Flocas H (2004) On the relationships between circulation types and changes in rainfall variability in Greece. Int J Climatol 24:1695–1712CrossRefGoogle Scholar
  34. Morawska-Horawska M (1971) Meteorological cause of the flood in southern Poland in July 1970. Prz Geofiz 4:299–315, in Polish with English summaryGoogle Scholar
  35. Murray R, Lewis RP (1966) Some aspects of the synoptic climatology of the British Isles as measured by simple indices. Meteorol Mag 95:193–203Google Scholar
  36. New M, Todd M, Hulme M, Jones P (2001) Precipitation measurement and trends in the twentieth century. Int J Climatol 21:1899–1922CrossRefGoogle Scholar
  37. Niedźwiedź T (1981) Synoptic situations and its influence on spatial differentiation of selected climatic elements in upper Vistula basin, vol 58. Rozprawy Habilitacyjne UJ, Kraków, in Polish with English summaryGoogle Scholar
  38. Niedźwiedź T (1996) Long-term variability of the zonal zirculation index above the central Europe. Zesz Nauk UJ Prace Geogr 102:213–219Google Scholar
  39. Niedźwiedź T (1999) Rainfall characteristics in Southern Poland during the severe flooding event of July 1997. Stud Geomorphol Carpatho Balc 33:5–25Google Scholar
  40. Niedźwiedź T (2000) Variability of the atmospheric circulation above the central Europe in the light of selected indices. Prace Geogr Inst Geogr UJ 107:379–389Google Scholar
  41. Niedźwiedź T (2002) Relations between NAO and circulation indices for Poland. In: Marsz AA, Styszyńska A (eds) North Atlantic Oscillation and its role in the developing of the variability of climatic and hydrologic conditions in Poland. Akademia Morska w Gdyni, Gdynia, pp 87–97, in Polish with English summaryGoogle Scholar
  42. Niedźwiedź T (2003a) Extreme precipitation in central Europe and its synoptic background. Global Change IGBP 10:15–29Google Scholar
  43. Niedźwiedź T (2003b) Extreme precipitation events on the northern side of the Tatra Mountains. Geogr Pol 76(2):13–21Google Scholar
  44. Niedźwiedź T (2007) Catalogue of synoptic situations and circulation indices in the upper Vistula river basin (1873–2007). Computer file available at Department of Climatology, University of Silesia, ul. Będzińska 60, PL 41-200 Sosnowiec, Poland: Scholar
  45. Niedźwiedź T, Twardosz R (2004) Long-term variability of precipitation at selected stations in central Europe. Global Change IGBP 11:73–100Google Scholar
  46. Prokop P, Walanus A (2003) Trends and periodicity in the longest instrumental rainfall series for the area of most extreme rainfall in the world, Northeast India. Geogr Pol 76(2):25–35Google Scholar
  47. Razuvaev VN, Apasova EG, Martuganov RA (1993) Daily temperature and precipitation data for 223 USSR stations. Oak Ridge National Laboratory, Carbon Dioxide Information Analysis Center ORNL/CDIAC-56, NDP-040. Available from Carbon Dioxide Information Analysis Center, Oak Ridge national Laboratory, P.O. Box 2008, Oak Ridge, TN 37831Google Scholar
  48. Scheremetova LM (ed) (1981) Meteorological data for particular years on the abroad territories of the Northern Hemisphere, Monthly and annual totals of precipitation, Part 1, Europe. Gidrometeoizdat, GGO, Leningrad, in RussianGoogle Scholar
  49. Schönwiese C-D (2000) Praktische Statistik für Meteorologen und Geowissenschaftler. Gebrüder Borntraeger, BerlinGoogle Scholar
  50. Schönwiese C-D, Rapp J (1997) Climate trend atlas of Europe based on observations 1891-1990. Kluwer Academic, DordrechtGoogle Scholar
  51. Steinrücke J (1999) Changes in the Northern-Hemispheric Zonal Circulation in the Atlantic–European Sector since 1881 and their relationship to precipitation frequencies in the Mediterranean and central Europe. Bochum Geogr Arb 65:1–137Google Scholar
  52. Štěpánek P (2006) AnClim—software for time series analysis (for Windows). Department of Geography, Faculty of Natural Sciences, Masaryk University, Brno. 1.47 MB. Available at
  53. Tomozeiu R, Stefan S, Busuioc A (2005) Winter precipitation variability and large-scale circulation patterns in Romania. Theor Appl Climatol 81:193–201CrossRefGoogle Scholar
  54. Tošić I, Unkašević M (2005) Analysis of precipitation series for Belgrade. Theor Appl Climatol 80:67–77CrossRefGoogle Scholar
  55. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 235–336Google Scholar
  56. Twardosz R (1996) Variabilité des précipitations atmosphériques en Europe centrale pendant la période 1850-1995. Publ Assoc Intern Climatol 9:520–527Google Scholar
  57. Twardosz R (1997) Homogenization of the precipitation measurement series for Cracow meteorological station. In: Trepińska J (ed) Fluctuations of climate in Cracow (1792–1995). Instytut Geografii UJ, Kraków, pp 89–95, in Polish with English summaryGoogle Scholar
  58. Twardosz R (1998) Relations entre les précipitations et les indices de circulation atmosphérique à Cracovie durant la dernière période séculaire. Publ Assoc Intern Climatol 11:359–366Google Scholar
  59. Twardosz R (1999) Precipitation variability and tendency in Kraków for the period 1850–1997 related to circulation patterns. Acta Geophys Pol 47(1):111–133Google Scholar
  60. Twardosz R (2007) Diurnal variation of precipitation frequency in the warm half of the year according to circulation types in Kraków, Southern Poland. Theor Appl Climatol 89:229–238CrossRefGoogle Scholar
  61. Twardosz R, Niedźwiedź T (2001) Influence of synoptic situations on the precipitation in Kraków (Poland). Int J Climatol 21:467–481CrossRefGoogle Scholar
  62. Ustrnul Z, Czekierda D (2001) Circulation background of the atmospheric precipitation in central Europe (based on the Polish example). Meteorol Z 10(3):103–111CrossRefGoogle Scholar
  63. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, CambridgeGoogle Scholar
  64. Vose RS, Schmoyer RL, Steurer PM, Peterson TC, Heim R, Karl TR, Eisheid JK (1992) The global historical climatology network: long-term monthly temperature, precipitation, sea level pressure, and station pressure data. Carbon Dioxide Information Analysis Center Publ. 3912. Available from Carbon Dioxide Information and Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831Google Scholar
  65. Walanus A (1998) Statistical analysis of the sequence of laminae thickness. In: Ralska-Jasiewiczowa M et al (ed) Lake Gościąż, central Poland, a monographic study, Part 1. Institute of Botany PAS, Kraków, pp 111–114Google Scholar
  66. Wibig J (1999) Precipitation in Europe in relation to circulation patterns at the 500 hPa level. Int J Climatol 19:253–269CrossRefGoogle Scholar
  67. Wibig J (2001) Influence of atmospheric circulation on the spatial differentiation of temperature and precipitation anomalies in Europe. Rozprawy Habilitacyjne Uniwersytetu Łódzkiego, Łódź, in Polish with English summaryGoogle Scholar
  68. Żmudzka E (2002) On a variability of atmospheric precipitation over Polish lowlands in the second half of 20th century. Wiad Inst Meteorol Gosp Wod 25:23–38, in Polish with English summaryGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of ClimatologyUniversity of SilesiaSosnowiecPoland
  2. 2.Department of ClimatologyJagiellonian UniversityKrakówPoland
  3. 3.Department of Geoinformatics and Applied Computer ScienceAGH University of Science and TechnologyKrakówPoland

Personalised recommendations