Theoretical and Applied Climatology

, Volume 98, Issue 3–4, pp 209–220 | Cite as

Thermal bioclimate in Strasbourg - the 2003 heat wave

  • Andreas Matzarakis
  • Manuela De Rocco
  • Georges Najjar
Original Paper

Abstract

This case study highlights the implications of the 2003 heat wave for the city of Strasbourg, France. The urban centers of France and other European countries were particularly affected by the heat wave. In some urban areas, the mortality rate was 60% above the expected value (Institute de Veille Sanitaire, 2003). The 2003 heat wave demonstrated once again that populations in urban centers are much more affected by extreme meteorological events than people living in rural areas. The aim of this analysis is to explore differences in thermal comfort conditions of (a) the city center of Strasbourg, and (b) its hinterland. The differences in thermal conditions existing between rural and urban areas are quantified by using a bio-climatological index termed physiologically equivalent temperature (PET). This index is based on the human energy balance and builds a relevant index for the quantification of the thermal environment of humans. We calculate the PET for the years 2003 and 2004 to highlight the temporal changes in the severity of climate extremes. The spatial scope of this study is improved compared to previous works in the field through the inclusion of PET calculations for five different sites on a central place in Strasbourg (Place Kléber). The calculations are characterized by different sky view factors and are compared to the reference site, which is located in a rural area. In the rural hinterland (Entzheim), the analysis of PET indicates a strong cold thermal stress during the winter months but no significant stress in summer. In 2003, summer temperatures were sensed as warmer compared to other years, but did not reach the extreme temperatures that may cause severe heat stress. For both the rural and the urban study sites PET was higher in the summer of 2003 than in 2004, which reflects the inferior thermal conditions in the urban area during the heat wave in 2003. For the entire study period, urban and rural day-time PET reached similar maximal values. Strong differences in PET, however, were observed between the rural and urban areas at night-time. The study of PET for several study sites on a central place in the city (Place Kléber) of Strasbourg for the years 2003 and 2004 showed that the sites with a higher sky view factor present higher values than sites with a lower sky view factor. The comparison of these PET values (Place Kléber) to the results for the rural area showed that during the day and the night the rural city of Entzheim has the lowest PET. During the day, the site at Place Kléber, which is located under a tree, has the lowest PET. The comparison of PET for the years 2003 and 2004 shows that PET in 2003 was about 5 to 7 K higher.

References

  1. Ali-Toudert F, Mayer H (2006) Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build Environ 41:94–108CrossRefGoogle Scholar
  2. Association pour la surveillance et l’etude de la pollution atmosphérique en Alsace (ASPA) (1998) Rapport d’ActivitéGoogle Scholar
  3. De Hatten A (2002) Mise en évidence des caractéristiques générales de l’îlot de chaleur urbain strasbourgeois - Elaboration d’une base de données climatiques. Mémoire de maîtrise de géographie physique, Faculté de Géographie et d’Aménagement, Université Louis Pasteur, StrasbourgGoogle Scholar
  4. De Hatten A (2003) Utilisation d’une approche géostatique pour la cartographie et l’interprétation de l’îlot de Chaleur Urbain de Strasbourg. Mémoire de DEA, Faculté de Géographie et d’Aménagement, Université Louis Pasteur, StrasbourgGoogle Scholar
  5. Fanger PO (1972) Thermal comfort. Mc Graw-Hill, New YorkGoogle Scholar
  6. Gagge AP, Fobelets AP, Berglund PE (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–731Google Scholar
  7. Gulyás À, Unger J, Matzarakis A (2006) Assessment of the microclimatic and human comfort conditions in a complex urban environment: modelling and measurements. Build Environ 41:1713–1722CrossRefGoogle Scholar
  8. Höppe P (1993) Heat balance modeling. Experentia 49:741–746CrossRefGoogle Scholar
  9. Höppe P (1999) The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75CrossRefGoogle Scholar
  10. Höppe P, Mayer H (1987) Planungsrelevante Bewertung der thermischen Komponente des Stadtklimas. Landschaft and Stadt 19:22–29Google Scholar
  11. Kuttler W (2000) Stadtklima. In: Handbuch der Umweltveränderungen und Ökotoxologie, Band 1B: Atmosphäre (Hrsg.) Guderian R, Springer Verlag, pp 420–470Google Scholar
  12. Matzarakis A (2001) Die thermische Komponente des Stadtklimas. Ber. Meteorol. Inst. Univ. Freiburg No. 6Google Scholar
  13. Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84CrossRefGoogle Scholar
  14. Matzarakis A, Rutz F, Mayer H (2000) Estimation and calculation of the mean radiant temperature within urban structures. In: de Dear RJ, Kalma JD, Oke TR, Auliciems A (eds) Biometeorology and urban climatology at the turn of the millenium. Selected papers from the conference ICB-ICUC’99, WCASP-50, WMO/TD No. 1026, Sydney: 2000. pp 273–278Google Scholar
  15. Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334CrossRefGoogle Scholar
  16. Mayer H (1993) Urban bioclimatology. Experientia 49:957–963CrossRefGoogle Scholar
  17. Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Clim 38:43–49CrossRefGoogle Scholar
  18. REKLIP (1995) Atlas Climatique du Fossé Rhénan MéridionalGoogle Scholar
  19. Spagnolo J, de Dear RA (2003) Field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build Environ 38:721–738CrossRefGoogle Scholar
  20. VDI (1998) Part I: environmental meteorology, methods for the human-biometeorological evaluation of climate and air quality for the urban and regional planning at regional level. Part I: climate. VDI/DIN-Handbuch Reinhaltung der Luft, Band 1b, Düsseldorf, 29 ppGoogle Scholar
  21. Wanner H (1985) Die Grundstrukturen der städtischen Klimamodifikation und deren Bedeutung für die Raumplanung. In: Jahrbuch der Geographischen Gesellschaft von Bern Band 5541983, S. 67–84Google Scholar
  22. World Health Organization (2004) Heat-waves: risks and responses. Regional Office for Europe. Health and Global Environmental Change, Series No. 2. Copenhagen, DenmarkGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Andreas Matzarakis
    • 1
  • Manuela De Rocco
    • 2
  • Georges Najjar
    • 3
  1. 1.Meteorological InstituteUniversity of FreiburgFreiburgGermany
  2. 2.MondercangeLuxemburg
  3. 3.Faculté de GéographieUniversité Louis PasteurStrasbourgFrance

Personalised recommendations